Download Free Chemistry Of Dehydrogenation Reactions And Its Applications Book in PDF and EPUB Free Download. You can read online Chemistry Of Dehydrogenation Reactions And Its Applications and write the review.

The present book focuses on advancement in the application of heterogeneous catalytic materials for the dehydrogenative synthesis of valuable organic compounds from substrates such as alcohols and simple aliphatic compounds. Several heterogeneous transition metals-based catalytic materials are explored for the synthesis of valuable chemicals for industrial applications. The book provides insight into the application of state-of-the-art technology for energy utilization and clean chemical synthesis. Features: Offers a wide overview of dehydrogenation catalytic chemistry catalyzed by transition metals and their compounds. Helps design novel and more benign and uncomplicated protocols for the synthesis of valuable chemicals from readily available raw materials. Provides deeper insight into the aspect of dehydrogenation reactions for clean chemical synthesis via a cascade process. Summarizes new mechanistic details of dehydrogenation reactions, experimental side development and applications of dehydrogenation techniques. Explores alternative solutions for the assimilation and transportation of clean energy in the form of hydrogen energy utilization. This book is aimed at graduate students and researchers in chemical engineering, chemistry, catalysis, organic synthesis, pharmaceutical chemistry and petrochemistry.
Pincer-Metal Complexes: Applications in Catalytic Dehydrogenation Chemistry provides an overview of pincer-metal catalytic systems that transform hydrocarbons and their derivatives from an synthetic and mechanistic point-of-view. This book provides thorough coverage of the operating mechanisms and dehydrogenation catalyst compatibility in both functionalized and unfunctionalized hydrocarbon systems. In addition, it includes success stories of pincer-metal systems, as well as current and future challenges. The book is an ideal reference for researchers practicing synthetic organic chemistry, inorganic chemistry, organometallic chemistry and catalysis in academia and industry. In recent years there has been a surge in the research on hydrocarbon dehydrogenation catalytic systems that are compatible with polar substituents. This helps facilitate formulation of tandem processes that are not limited to hydrocarbon transformation but also to hydrocarbon functionalization in a single pot. - Covers applications of pincer-metal complexes in organic transformations - Includes pincer-group 8 and 9 metal complexes for alkane dehydrogenations - Features a discussion of pincer-metal complexes for the dehydrogenation of functionalized hydrocarbons and electro-catalytic transformations
The present book focuses on advancement in the application of heterogeneous catalytic materials for the dehydrogenative synthesis of valuable organic compounds from substrates like alcohols and simple aliphatic compounds. Several heterogeneous transition metals-based catalytic materials are explored for the synthesis of valuable chemicals for the industrial applications. It provides an insight into the application of the state-of the art technology for energy utilization and clean chemical synthesis. Features: Offers a wide overview of dehydrogenation catalytic chemistry, catalysed by transition metals and their compounds. Helps design novel and more benign and uncomplicated protocols for the synthesis of valuable chemicals from readily available raw materials. Provides a deeper insight to the aspect of dehydrogenation reactions for clean chemicals synthesis via cascade process. Summarizes new mechanistic details of dehydrogenation reactions, as well as the experimental side development and the applications of dehydrogenation techniques. Explores alternative solution for assimilation and transportation of clean energy in the form of hydrogen energy utilization. This book is aimed at graduate students and researchers in chemical engineering, chemistry, catalysis, organic synthesis, pharmaceutical chemistry and petrochemistry.
The collection of contributions in this volume presents the most up-to-date findings in catalytic hydrogenation. The individual chapters have been written by 36 top specialists each of whom has achieved a remarkable depth of coverage when dealing with his particular topic. In addition to detailed treatment of the most recent problems connected with catalytic hydrogenations, the book also contains a number of previously unpublished results obtained either by the authors themselves or within the organizations to which they are affiliated.Because of its topical and original character, the book provides a wealth of information which will be invaluable not only to researchers and technicians dealing with hydrogenation, but also to all those concerned with homogeneous and heterogeneous catalysis, organic technology, petrochemistry and chemical engineering.
Pincer Compounds: Chemistry and Applications offers valuable state-of-the-art coverage highlighting highly active areas of research—from mechanistic work to synthesis and characterization. The book focuses on small molecule activation chemistry (particularly H2 and hydrogenation), earth abundant metals (such as Fe), actinides, carbene-pincers, chiral catalysis, and alternative solvent usage. The book covers the current state of the field, featuring chapters from renowned contributors, covering four continents and ranging from still-active pioneers to new names emerging as creative strong contributors to this fascinating and promising area. Over a decade since the publication of Morales-Morales and Jensen's The Chemistry of Pincer Compounds (Elsevier 2007), research in this unique area has flourished, finding a plethora of applications in almost every single branch of chemistry—from their traditional application as very robust and active catalysts all the way to potential biological and pharmaceutical applications. - Describes the chemistry and applications of this important class of organometallic and coordination compounds - Includes contributions from global leaders in the field, featuring pioneers in the area as well as emerging experts conducting exciting research on pincer complexes - Highlights areas of promising and active research, including small molecule activation, earth abundant metals, and actinide chemistry
The Isoquinoline Alkaloids: A Course in Organic Chemistry is a description of the chemical structures of alkaloids. The book discusses the processes for degradation of isoquinoline alkaloids to recognizable compounds such as oxidation and exhaustive methylation. The associated processes in removing the nitrogen atom are also explained. The commonly used Hofmann process and the interpretation of its result are evaluated in the degradation of alkaloids. The cactus ""pellote"" used by Mexican Indians to induce hallucinatory experiences is examined. The active ingredient is identified as mescaline; its composition is analyzed to contain one primary amino and three methoxyl groups. The different syntheses made to duplicate mescaline are described. The structures of morphine, codeine, and thebain, which are all alkaloids of opium, are also analyzed. Another example of a principal alkaloid found in a plant is emetine found in the root of the ipecac. The pharmacological bases of emetine are isolated and noted as emetamine, cephaeline, psychotrine, and O-methylpsychotrine. The text also traces many other structural relationships within the subgroups of the isoquinoline alkaloids. Chemists, students and professors in organic chemistry, and laboratory technicians whose work is related to pharmacology will find this book informative.
Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for catalysts), mixed and complex oxides and salts, halides, sulfides, carbides, and unsupported and supported metals are all considered. The book encompasses applications in industrial chemistry, refinery, petrochemistry, biomass conversion, energy production, and environmental protection technologies. - Provides a systematic and clear approach of the synthesis, solid state chemistry and surface chemistry of all solid state catalysts - Covers widely used instrumental techniques for catalyst characterization, such as x-ray photoelectron spectroscopy, scanning electron microscopy, and more - Includes characterization methods and lists all catalytic behavior of the solid state catalysts - Discusses new developments in nanocatalysts and their advantages over conventional catalysts
The second edition of Comprehensive Organic Synthesis—winner of the 2015 PROSE Award for Multivolume Reference/Science from the Association of American Publishers—builds upon the highly respected first edition in drawing together the new common themes that underlie the many disparate areas of organic chemistry. These themes support effective and efficient synthetic strategies, thus providing a comprehensive overview of this important discipline. Fully revised and updated, this new set forms an essential reference work for all those seeking information on the solution of synthetic problems, whether they are experienced practitioners or chemists whose major interests lie outside organic synthesis. In addition, synthetic chemists requiring the essential facts in new areas, as well as students completely new to the field, will find Comprehensive Organic Synthesis, Second Edition, Nine Volume Set an invaluable source, providing an authoritative overview of core concepts. Winner of the 2015 PROSE Award for Multivolume Reference/Science from the Association of American Publishers Contains more than170 articles across nine volumes, including detailed analysis of core topics such as bonds, oxidation, and reduction Includes more than10,000 schemes and images Fully revised and updated; important growth areas—including combinatorial chemistry, new technological, industrial, and green chemistry developments—are covered extensively
Environmental Inorganic Chemistry for Engineers explains the principles of inorganic contaminant behavior, also applying these principles to explore available remediation technologies, and providing the design, operation, and advantages or disadvantages of the various remediation technologies. Written for environmental engineers and researchers, this reference provides the tools and methods that are imperative to protect and improve the environment. The book's three-part treatment starts with a clear and rigorous exposition of metals, including topics such as preparations, structures and bonding, reactions and properties, and complex formation and sequestering. This coverage is followed by a self-contained section concerning complex formation, sequestering, and organometallics, including hydrides and carbonyls. Part Two, Non-Metals, provides an overview of chemical periodicity and the fundamentals of their structure and properties. - Clearly explains the principles of inorganic contaminant behavior in order to explore available remediation technologies - Provides the design, operation, and advantages or disadvantages of the various remediation technologies - Presents a clear exposition of metals, including topics such as preparations, structures, and bonding, reaction and properties, and complex formation and sequestering
This book puts forward the concept of the Diameter-Transformed Fluidized Bed (DTFB): a fluidized bed characterized by the coexistence of multiple flow regimes and reaction zones, achieved by transforming the bed into several sections of different diameters. It reviews fundamental aspects, including computational fluid dynamics simulations and industrial practices in connection with DTFB. In particular, it highlights an example concerning the development of maximizing iso-paraffins (MIP) reactors for regulating complex, fluid catalytic cracking reactions in petroleum refineries. The book is a must-have for understanding how academic and industrial researchers are now collaborating in order to develop novel catalytic processes.