Download Free Chemistry In Motion Book in PDF and EPUB Free Download. You can read online Chemistry In Motion and write the review.

Change and motion define and constantly reshape the world around us, on scales from the molecular to the global. In particular, the subtle interplay between chemical reactions and molecular transport gives rise to an astounding richness of natural phenomena, and often manifests itself in the emergence of intricate spatial or temporal patterns. The underlying theme of this book is that by “setting chemistry in motion” in a proper way, it is not only possible to discover a variety of new phenomena, in which chemical reactions are coupled with diffusion, but also to build micro-/nanoarchitectures and systems of practical importance. Although reaction and diffusion (RD) processes are essential for the functioning of biological systems, there have been only a few examples of their application in modern micro- and nanotechnology. Part of the problem has been that RD phenomena are hard to bring under experimental control, especially when the system’s dimensions are small. Ultimately this book will guide the reader through all the aspects of these systems – from understanding the basics to practical hints and then to applications and interpretation of results. Topics covered include: An overview and outlook of both biological and man-made reaction-diffusion systems. The fundamentals and mathematics of diffusion and chemical reactions. Reaction-diffusion equations and the methods of solving them. Spatial control of reaction-diffusion at small scales. Micro- and nanofabrication by reaction-diffusion. Chemical clocks and periodic precipitation structures. Reaction-diffusion in soft materials and at solid interfaces. Microstructuring of solids using RD. Reaction-diffusion for chemical amplification and sensing. RD in three dimensions and at the nanoscale, including nanosynthesis. This book is aimed at all those who are interested in chemical processes at small scales, especially physical chemists, chemical engineers, and material scientists. The book can also be used for one-semester, graduate elective courses in chemical engineering, materials science, or chemistry classes.
Self-propelled objects (particles, droplets) are autonomous agents that can convert energy from the environment into motion. These motions include nonlinear behaviour such as oscillations, synchronization, bifurcation, and pattern formation. In recent years, there has been much interest in self-propelled objects for their potential role in mass transport or their use as carriers in confined spaces. An improved understanding of self-organized motion has even allowed researchers to design objects for specific motion. This book gives an overview of the principles of self-propelled motion in chemical objects (particles, droplets) far from their thermodynamic equilibrium, at various spatial scales. Theoretical aspects, the characteristics of the motion and the design procedures of such systems are discussed from the viewpoint of nonlinear dynamics and examples of applications for these nonlinear systems are provided. This book is suitable for researchers and graduate students interested in physical and theoretical chemistry as well as soft matter.
to arrive at some temporary consensus model or models; and to present reliable physical data pertaining to water under a range of conditions, i.e., "Dorsey revisited," albeit on a less ambitious scale. I should like to acknowledge a debt of gratitude to several of my col leagues, to Prof. D. J. G. Ives and Prof. Robert L. Kay for valuable guidance and active encouragement, to the contributors to this volume for their willing cooperation, and to my wife and daughters for the understanding shown to a husband and father who hid in his study for many an evening. My very special thanks go to Mrs. Joyce Johnson, who did all the cor respondence and much of the arduous editorial work with her usual cheerful efficiency. F. FRANKS Biophysics Division Unilever Research Laboratory ColworthjWelwyn Colworth House, Sharnbrook, Bedford March 1972 Contents Chapter 1 Introduction-Water, the Unique Chemical F. Franks I. lntroduction ........................................ . 2. The Occurrence and Distribution of Water on the Earth 2 3. Water and Life ...................................... 4 4. The Scientific Study of Water-A Short History ........ 8 5. The Place of Water among Liquids . . . . . . . . . . . . . . . 13 . . . . . Chapter 2 The Water Moleeule C. W. Kern and M. Karplus 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 . . . . . . . . . . 2. Principles of Structure and Spectra: The Born-Oppenheimer Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 . . . . . . . . . . . . 3. The Electronic Motion ............................... 26 3.1. The Ground Electronic State of Water ............ 31 3.2. The Excited Electronic States of Water ........... 50 4. The Nuclear Motion ................................. 52 5. External-Field Effects ................................. 70 5.1. Perturbed Hartree-Fock Method . . . . . . . . . . . . . . . 74 . . .
Classic undergraduate text explores wave functions for the hydrogen atom, perturbation theory, the Pauli exclusion principle, and the structure of simple and complex molecules. Numerous tables and figures.
This book represents a collection of lectures presented at the NATO Advanced study Institute(ASI) on "Chemistry & Physics of the Molecular Processes in Energetic Materials", held at Hotel Torre Normanna, Altavilla Milicia, Sicily, Italy, September 3 to 15, 1989. The institute was attended by seventy participants including twenty lecturers, drawn from thirteen countries. The purpose of the institute was to review the major ad vances made in recent years in the theoretical and experi mental aspects of explosives and propellants. In accordance with the format of the NATO ASI, it was arranged to have a relatively small number of speakers to present in depth, re view type lectures emphasizing the basic research aspects of the subject, over a two week period. Most of the speakers gave two lectures, each in excess of one hour with addition al time for discussions. The scope of the meeting was limit ed to molecular and spectroscopic studies since the hydro dynamic aspects of detonation and various performance crite ria of energetic materials are often covered adequately in other international meetings. An attempt was made to have a coherent presentation of various theoretical, computational and spectroscopic approaches to help a better understanding of energetic materials from a molecular point of view. The progress already made in these areas is such that structure property (e. g.
2023-24 NTA NEET (UG) Physics, Chemistry & Biology Solved Papers
Most of the material covered in this book deals with the fundamentals of chemistry and physics of key processes and fundamental mechanisms for various combustion and combustion related phenomena in gaseous combustible mixture. It provides the reader with basic knowledge of burning processes and mechanisms of reaction wave propagation. The combustion of a gas mixture (flame, explosion, detonation) is necessarily accompanied by motion of the gas. The process of combustion is therefore not only a chemical phenomenon but also one of gas dynamics. The material selection focuses on the gas phase and with premixed gas combustion. Premixed gas combustion is of practical importance in engines, modern gas turbine and explosions, where the fuel and air are essentially premixed, and combustion occurs by the propagation of a front separating unburned mixture from fully burned mixture. Since premixed combustion is the most fundamental and potential for practical applications, the emphasis in the present work is be placed on regimes of premixed combustion. This text is intended for graduate students of different specialties, including physics, chemistry, mechanical engineering, computer science, mathematics and astrophysics.
This Open Access book gives a comprehensive account of both the history and current achievements of molecular beam research. In 1919, Otto Stern launched the revolutionary molecular beam technique. This technique made it possible to send atoms and molecules with well-defined momentum through vacuum and to measure with high accuracy the deflections they underwent when acted upon by transversal forces. These measurements revealed unforeseen quantum properties of nuclei, atoms, and molecules that became the basis for our current understanding of quantum matter. This volume shows that many key areas of modern physics and chemistry owe their beginnings to the seminal molecular beam work of Otto Stern and his school. Written by internationally recognized experts, the contributions in this volume will help experienced researchers and incoming graduate students alike to keep abreast of current developments in molecular beam research as well as to appreciate the history and evolution of this powerful method and the knowledge it reveals.