Download Free Chemistry For Biologists Book in PDF and EPUB Free Download. You can read online Chemistry For Biologists and write the review.

Written in a straightforward, accessible style, the book begins with an overview of basic chemical concepts. Building on these core principles, the reader is guided through subjects such as the structures and properties of organic molecules, equilibria, energetics, kinetics, biomolecules, reaction mechanisms, metabolism and structural methods. The relevance of each chemical concept to the study of biology is clearly explained at every stage, enabling students to develop a deep appreciation of the chemistry that underpins their chosen subject, and become confident in applying this knowledge to their own studies. Numerous boxed features highlight key ideas and explore more advanced concepts. For biology and biosciences undergraduates with little background in chemistry who need to bring their skills up to scratch quickly, and any students who wish to develop their confidence in chemistry to take their studies further, this book will be an invaluable resource.
BIOS Instant Notes Chemistry for Biologists, Third Edition, is the perfect text for undergraduates looking for a concise introduction to the subject, or a study guide to use before examinations. Each topic begins with a summary of essential facts-an ideal revision checklist-followed by a description of the subject that focuses on core information, with clear, simple diagrams that are easy for students to understand and recall in essays and exams. BIOS Instant Notes Chemistry for Biologists, Third Edition, is fully up-to-date and covers: The elements Chemical bonds and molecular shape Water- the biological solvent Carbon, the basis for life on Earth 3D-molecular structure of organic compounds Small inorganic molecules of biological importance Some metals in biology Molecular interactions Common reaction types of carbon based compounds Organic compounds by chemical class Aromatic compunds Chemical synthesis of biological molecules Important biological macromolecules by class Aqueous behaviour Elementary thermodynamics Kinetics Spectroscopy Units and calculations
The importance of metals in biology, the environment and medicine has become increasingly evident over the last twenty five years. The study of the multiple roles of metal ions in biological systems, the rapidly expanding interface between inorganic chemistry and biology constitutes the subject called Biological Inorganic Chemistry. The present text, written by a biochemist, with a long career experience in the field (particularly iron and copper) presents an introduction to this exciting and dynamic field. The book begins with introductory chapters, which together constitute an overview of the concepts, both chemical and biological, which are required to equip the reader for the detailed analysis which follows. Pathways of metal assimilation, storage and transport, as well as metal homeostasis are dealt with next. Thereafter, individual chapters discuss the roles of sodium and potassium, magnesium, calcium, zinc, iron, copper, nickel and cobalt, manganese, and finally molybdenum, vanadium, tungsten and chromium. The final three chapters provide a tantalising view of the roles of metals in brain function, biomineralization and a brief illustration of their importance in both medicine and the environment.Relaxed and agreeable writing style. The reader will not only fiind the book easy to read, the fascinating anecdotes and footnotes will give him pegs to hang important ideas on.Written by a biochemist. Will enable the reader to more readily grasp the biological and clinical relevance of the subject.Many colour illustrations. Enables easier visualization of molecular mechanismsWritten by a single author. Ensures homgeneity of style and effective cross referencing between chapters
"This excellent work fills the need for an upper-level graduate course resource that examines the latest biochemical, biophysical, and molecular biological methods for analyzing the structures and physical properties of biomolecules... This reviewer showed [the book] to several of his senior graduate students, and they unanimously gave the book rave reviews. Summing Up: Highly recommended..." CHOICE Chemical biology is a rapidly developing branch of chemistry, which sets out to understand the way biology works at the molecular level. Fundamental to chemical biology is a detailed understanding of the syntheses, structures and behaviours of biological macromolecules and macromolecular lipid assemblies that together represent the primary constituents of all cells and all organisms. The subject area of chemical biology bridges many different disciplines and is fast becoming an integral part of academic and commercial research. This textbook is designed specifically as a key teaching resource for chemical biology that is intended to build on foundations lain down by introductory physical and organic chemistry courses. This book is an invaluable text for advanced undergraduates taking biological, bioorganic, organic and structural chemistry courses. It is also of interest to biochemists and molecular biologists, as well as professionals within the medical and pharmaceutical industry. Key Features: A comprehensive introduction to this dynamic area of chemistry, which will equip chemists for the task of understanding and studying the underlying principles behind the functioning of biological macro molecules, macromolecular lipid assemblies and cells. Covers many basic concepts and ideas associated with the study of the interface between chemistry and biology. Includes pedagogical features such as: key examples, glossary of equations, further reading and links to websites. Clearly written and richly illustrated in full colour.
This book provides an introduction to physical chemistry that is directed toward applications to the biological sciences. Advanced mathematics is not required. This book can be used for either a one semester or two semester course, and as a reference volume by students and faculty in the biological sciences.
Seventy years ago, Erwin Schrödinger posed a profound question: 'What is life, and how did it emerge from non-life?' This problem has puzzled biologists and physical scientists ever since. Living things are hugely complex and have unique properties, such as self-maintenance and apparently purposeful behaviour which we do not see in inert matter. So how does chemistry give rise to biology? What could have led the first replicating molecules up such a path? Now, developments in the emerging field of 'systems chemistry' are unlocking the problem. Addy Pross shows how the different kind of stability that operates among replicating molecules results in a tendency for chemical systems to become more complex and acquire the properties of life. Strikingly, he demonstrates that Darwinian evolution is the biological expression of a deeper, well-defined chemical concept: the whole story from replicating molecules to complex life is one continuous process governed by an underlying physical principle. The gulf between biology and the physical sciences is finally becoming bridged. This new edition includes an Epilogue describing developments in the concepts of fundamental forms of stability discussed in the book, and their profound implications. Oxford Landmark Science books are 'must-read' classics of modern science writing which have crystallized big ideas, and shaped the way we think.
Environmental pollution is a universal problem which threatens the continued existence of mankind, rendering it one of the primary concerns of society. This book provides a comprehensive view of the chemistry and biology of water, air and soil, particularly those aspects connected with the protection of the environment. The first part of the book presents fundamental information on the chemistry and biology of water in its natural state, and the effects of water pollution from industry, traffic, agriculture and urbanization. It covers the composition of natural, service and wastewaters as well as methods of chemical and biological water analysis and water treatment. The second part deals with atmospheric problems, particularly the basic composition of atmosphere and the different sources of its pollution, methods of restriction, and air analysis. The final part of the volume focuses on the characteristics of soil and soil components, natural and anthropogenous soil processes, the chemistry, biology and microbiology of soil, and soil analysis. This book will be of great value to chemists, biologists, physicians, pharmacists, farmers, veterinarians and university students, as well as to those engaged in the sphere of environmental protection.
The central theme, which threads through the entire book, concerns computational modeling methods for water. Modeling results for pure liquid water, water near ions, water at interfaces, water in biological microsystems, and water under other types of perturbations such as laser fields are described. Connections are made throughout the book with statistical mechanical theoretical methods on the one hand and with experimental data on the other. The book is expected to be useful not only for theorists and computer analysts interested in the physical, chemical, biological and geophysical aspects of water, but also for experimentalists in these fields.
The finding by Emil Fischer that glucose and fructose on treatment with phenylhydrazine gave the identical osazone led him to the elucidation of stereochemistry of carbohydrates. Since then, progress in the field of carbohydrates has been amazing with the unraveling their basic structure, biosynthesis, immunology, functions, and clinical uses, for pure carbohydrates and for protein-linked carbohydrates (glycoproteins and proteoglycans). The chapters in Carbohydrate Chemistry, Biology and Medical Applications present a logical sequence leading from the chemistry and biochemistry of carbohydrates, followed by their role in various pathological conditions, to carbohydrates as potential therapeutic and diagnostic agents. This book offers a detailed panoramic review of the chemistry and biology of carbohydrates for chemists, biologists and health professionals. Each chapter is authored by contributors expert in the particular area of research. - Explains how carbohydrates are important to life - Details the chemistry, biology and medical aspects of carbohydrates - Interdisciplinary and international team of authors