Download Free Chemistry And Technology Of Silicones Book in PDF and EPUB Free Download. You can read online Chemistry And Technology Of Silicones and write the review.

Chemistry and Technology of Silicones retains the nature of a monograph despite its expanded scope, giving the reader in condensed form not only a wide-ranging but also a thorough review of this rapidly growing field. In contrast to some other monographs on organosilicon compounds that have appeared in the interim, the silicones occupy in this edition the central position, and the technological part of the work is entirely devoted to them. This book comprises 12 chapters, and begins with a general discussion of the chemistry and molecular structure of the silicones. The following chapters then discuss preparation of silanes with nonfunctional organic substituents; monomeric organosilicon compounds RnSiX4-n; and organosilanes with organofunctional groups. Other chapters cover preparation of polyorganosiloxanes; the polymeric organosiloxanes; other organosilicon polymers; production of technical silicone products from polyorganosiloxanes; properties of technical products; applications of technical silicone products in various branches of industry; esters of silicic acid; and analytical methods. This book will be of interest to practitioners in the fields of molecular chemistry.
Chemistry and Technology of Silicones retains the nature of a monograph despite its expanded scope, giving the reader in condensed form not only a wide-ranging but also a thorough review of this rapidly growing field. In contrast to some other monographs on organosilicon compounds that have appeared in the interim, the silicones occupy in this edition the central position, and the technological part of the work is entirely devoted to them. This book comprises 12 chapters, and begins with a general discussion of the chemistry and molecular structure of the silicones. The following chapters then discuss preparation of silanes with nonfunctional organic substituents; monomeric organosilicon compounds RnSiX4-n; and organosilanes with organofunctional groups. Other chapters cover preparation of polyorganosiloxanes; the polymeric organosiloxanes; other organosilicon polymers; production of technical silicone products from polyorganosiloxanes; properties of technical products; applications of technical silicone products in various branches of industry; esters of silicic acid; and analytical methods. This book will be of interest to practitioners in the fields of molecular chemistry.
Silicon-containing Polymers reflects the growing interest worldwide in this developing field. Silicon polymers are now finding use as moulding materials, rubbers, ceramic precursors, in lithography and reprography as photosensitive materials, as conducting polymers, and in a host of other applications. This book presents up-to-date research from all over the world. It brings together research from the forefront of a multidisciplinary subject, covering the synthesis, modification, characterization, properties and applications of polysiloxanes, polysilylenes, polysilazanes and organosilicate derivatives. Silicon-containing Polymers will be of interest to researchers and postgraduates in any area of materials science, as well as some areas of inorganic chemistry.
Silicon Based Polymers presents highlights in advanced research and technological innovations using macromolecular organosilicon compounds and systems, as presented in the 2007 ISPO congress. Silicon-containing materials and polymers are used all over the world and in a variety of industries, domestic products and high technology applications. Among them, silicones are certainly the most well–known, however there are still new properties discovered and preparative processes developed all the time, therefore adding to their potential. Less known, but in preparation for the future, are other silicon containing-polymers which are now close to maturity and in fact some are already available like polysilsesquioxanes and polysilanes. All these silicon based materials can adopt very different structures like chains, dendrimers, hyperbranched and networks, physical and chemical gels. The result is a vast array of materials with applications in various areas such as optics, electronics, ionic electrolytes, liquid crystals, biomaterials, ceramics and concrete, paints and coatings ... all needed to face the environmental, energetical and technological issues of today. Some industrial aspects of the applications of these materials will also be presented.
The organic compounds of silicon, which have been the subject of many scholarly researches during the past 80 years, at last show promise of emerging from the laboratory and finding a place in industry. An understanding of the behaviour of organosilicon materials is necessary to their intelligent use and, inasmuch as the chemistry of these substances ordinarily is not treated in our textbooks, it is possible that a compact yet comprehensive survey of our present knowledge in this field would be of service to chemists, engineers, and industrial designers. This volume has just such a purpose. The first few chapters review the silanes and their derivatives in some detail, in order to provide an understanding of the fundamental chemistry of the nonsilicate compounds of silicon. The later chapters emphasize the silicone polymers which have achieved commercial importance and deal with the methods for their preparation, their chemical and physical properties, and their possible uses. The processes available for large-scale production are treated separately, and a review of methods of analysis is included.
Silicon based materials and polymers are made of silicon containing polymers, mainly macromolecular siloxanes (silicones). This book covers the different kinds of siliconbased polymers: silicones, silsesquioxanes (POSS), and silicon-based copolymers. Other silicon containig polymers: polycarbosilanes, polysilazanes, siloxane-organic copolymers, silicon derived high-tech ceramics: silicon carbide and oxycarbide, silicon nitride, etc. have also a very important practical meaning and a hudge number of practical applications. These materials make up products in a variety of industries and products, including technical and medical applicatons. Polycrystalline silicon is the basic material for large scale photovoltaic (PV) applications as solar cells. Technical applications of crystalline (c-Si) and amorphous (a-Si) silicon (fully inorganic materials), silicon nanowires are still quickly growing, especially in the fi eld of microelectronics, optoelectronics, photonics. and photovoltaics, catalysts, and different electronic devices (e.g. sensors, thermoelectric devices). This book is ideal for researchers and as such covers the industrial perspective of using each class of silicon based materials. Discusses silanes, silane coupling agents (SCA), silica, silicates, silane modified fillers, silsesquioxanes, silicones, and other silicon polymers and copolymers for practical applications as polymeric materials and very useful ingredients in materials science.
After completing his chemistry studies in Krefeld/ Germany, Wernfried Heilen started working for Wulfing (PPG) in 1977, in the R&D Department for Industrial Coatings. After moving to Byk Chemie, he assumed responsibility as ProductManager for various product groups. In 1983 he joinedGoldschmidt as Head of Technical Service for Additives and, at a later stage, for silicone resins as well. He has been Director of Technical Marketing Department in the Degussa Business Line Tego Coatings & Ink Additives since 2001."
Silicone Surface Science offers a survey of the major topics concerning the properties and behavior of silicone surfaces. It covers all main aspects of the subject, including: polydimethylsiloxane, spread monolayers, self-assembled monolayers, hydrophobicity and super-hydrophobicity, coupling agents, surfactants, fluorosilicones, surface treatments and surface analysis. This book brings together the field's leading experts who investigated both fundamental and applied aspects of silicone surface science and technology, and introduces the reader to the origins and historical development of silicone surfaces as well as to their most significant current key features. Silicone Surface Science is an invaluable guide and indispensable reference source for all those interested in this important area of polymer and materials science and technology, from graduate students to experienced scientists alike.
This book deals with the organic chemistry of polymers which find technological use as adhesives, fibres, paints, plastics and rubbers. For the most part, only polymers which are of commercial significance are considered and the primary aim of the book is to relate theoretical aspects to industrial practice. The book is mainly intended for use by students in technical institutions and universities who are specializing in polymer science and by graduates who require an introduction to this field. Several excellent books have recently appeared dealing with the physical chemistry of polymers but the organic chemistry of polymers has not received so much attention. In recognition of this situation and because the two aspects of polymer chemistry are often taught separately, this book deals specifically with organic chemistry and topics of physical chemistry have been omitted. Also, in this way the book has been kept to a reasonable size. This is not to say that integration of the two areas of polymer science is undesirable; on the contrary, it is of the utmost importance that the inter-relationship should b~ appreciated. I wish to record my thanks to my colleagues with whom I have had many helpful discussions, particularly Mrs S. L. Radchenko. I also thank Miss E. Friesen for obtaining many books and articles on my behalf and Mr H. Harms for encouragement and assistance. I am also grateful to Mrs M. Stevens who skilfully prepared the manuscript. Department of Chemical and Metallurgical Technology, Ryerson Polytechnical Institute, K. J. S.