Download Free Chemistry And Biological Role Of Nucleic Acids Book in PDF and EPUB Free Download. You can read online Chemistry And Biological Role Of Nucleic Acids and write the review.

The structure, function and reactions of nucleic acids are central to molecular biology and are crucial for the understanding of complex biological processes involved. Revised and updated Nucleic Acids in Chemistry and Biology 3rd Edition discusses in detail, both the chemistry and biology of nucleic acids and brings RNA into parity with DNA. Written by leading experts, with extensive teaching experience, this new edition provides some updated and expanded coverage of nucleic acid chemistry, reactions and interactions with proteins and drugs. A brief history of the discovery of nucleic acids is followed by a molecularly based introduction to the structure and biological roles of DNA and RNA. Key chapters are devoted to the chemical synthesis of nucleosides and nucleotides, oligonucleotides and their analogues and to analytical techniques applied to nucleic acids. The text is supported by an extensive list of references, making it a definitive reference source. This authoritative book presents topics in an integrated manner and readable style. It is ideal for graduate and undergraduates students of chemistry and biochemistry, as well as new researchers to the field.
Since the discovery of the DNA double helix in 1953, nucleic acids have formed the central theme of much of contemporary molecular science. Nowhere is this more apparent than in the increasing efforts to determine the DNA sequence of the human genome and the development of new diagnostics of genetic disease. Recent sophistication of nucleic acids synthesis has been key to the establishment of the biotechnology industry and our improving knowledge of nucleic acid structures and interactions is noticeably influencing the design of novel drugs.This second and completely revised edition draws on the expertise of the same international group of authors to set the basics of the nucleic acids in the context of the expanding horizons set by modern structural biology, RNA enzymology, drug discovery and biotechnology.
Since the discovery of the DNA double helix in 1953, nucleic acids have formed the central theme of much of contemporary molecular science. Recent mastery of nucleic acids synthesis has been the key to the establishment of the biotechnology industry, and our improving knowledge of nucleic acid structures and interactions is considerably influencing the design of novel drugs. The first edition of this book responded to the pressing need for a single volume that integrated the chemistry and biology of the nucleic acids in an introductory yet authoritative text. This second and completely updated edition, which includes a new chapter on techniques applied to nucleic acids, sets the basics of the nucleic acids in the context of the expanding horizons set by modern structural biology, RNA enzymology, drug discovery and biotechnology.
The study of nucleic acids is one of the most rapidly developing fields in modern science. The exceptionally important role of the nucleic acids as a key to the understanding of the nature of life is reflected in the enormous number of published works on the subject, including many outstanding monographs and surveys. The pathways of syn thesis and metabolism of nucleic acid,s and the many and varied biological functions of these biopolymers are examined with the utmost detail in the literature. Nearly as much attention has been paid to the macromolecular chemistry of the nucleic acids: elucidation of the size and shape of their molecules, the study of the physicochemical properties of their solutions, and the appropriate methods to be used in such research. The surveys of the chemistry of nucleic acids which have been published so far deal almost entirely with their synthesis and, in particular, with the synthetic chemistry of monomers (nucleosides and nucleotides) ; less attention has been paid to the synthesis of poly nucleotides. There is yet another highly important aspect of the chemistry of nucleic acids which is still in the formative stage, the study of the reactivity of nucleic acid macromolecules and their components. This can make an important contribution to the deter mination of the structure of these remarkable biopolymers and to the correct understanding of their biological functions.
This volume contains 29 engrossing chapters contributed by worldwide, leading research groups in the field of chemical biology. Topics include pre-biology; the establishment of the genetic code; isomerization of RNA; damage of nucleobases in RNA; the dynamic structure of nucleic acids and their analogs in DNA replication, extra- and intra-cellular transport; molecular crowding by the use of ionic liquids; new technologies enabling the modification of gene expression via editing of therapeutic genes; the use of riboswitches; the modification of mRNA cap regions; new approaches to detect appropriately modified RNAs with EPR spectroscopy and the use of parallel and high-throughput techniques for the analysis of the structure and new functions of nucleic acids. This volume discusses how chemistry can add new frontiers to the field of nucleic acids in molecular medicine, biotechnology and nanotechnology and is not only an invaluable source of information to chemists, biochemists and life scientists but will also stimulate future research.
With extensive coverage of synthesis techniques and applications, this text describes chemical biology techniques which have gained significant impetus during the last five years. It focuses on the methods for obtaining modified and native nucleic acids, and their biological applications. Topics covered include: chemical synthesis of modified RNA expansion of the genetic alphabet in nucleic acids by creating new base pairs chemical biology of DNA replication: probing DNA polymerase selectivity mechanisms with modified nucleotides nucleic-acid-templated chemistry chemical biology of peptide nucleic acids (PNA) the interactions of small molecules with DNA and RNA the architectural modules of folded RNAs genesis and biological applications of locked nucleic acid (LNA) small non-coding RNA in bacteria microRNA-guided gene silencing nucleic acids based therapies innate immune recognition of nucleic acid light-responsive nucleic acids for the spatiotemporal control of biological processes DNA methylation frameworks for programming RNA devices RNA as a catalyst: The Diels-Alderase-Ribozyme evolving an understanding of RNA function by in vitro approaches the chemical biology of aptamers: synthesis and applications nucleic acids as detection tools bacterial riboswitch discovery and analysis The Chemical Biology of Nucleic Acids is an essential compendium of the synthesis of nucleic acids and their biological applications for bioorganic chemists, chemical biologists, medicinal chemists, cell biologists, and molecular biologists.
Life in all its forms is based on nucleic acids which store and transfer genetic information. The book addresses main aspects of synthesis, hydrolytic stability and solution equilibria of nucleosides, nucleotides and oligonucleotides, as well as synthesis of their structural analogs that are of interest in chemotherapy. In addition, recent achievements in chemistry of catalytic nucleic acids, development of oligonucleotide based drugs and novel strategies for their targeting and delivery are discussed. The central theme always is the correlation of structure and function.
The field of nucleic acids has grown to such a tremendeous size that it is impossible to include all publications concerning the chemistry and biological role of nucleic acids in an article of the length presented in this "Volume. Therefore, it is necessary to select the most important contributions and those not included "in well-known reviews. In many cases reference is made only to the authors who summarized their specialized field in chapters of the three volumes of "The Nucleic Acids" (edB. E. CHARGAFF and J. N. DAVIDSON, Acad. Press, New York 1955 and 19(0) or to the "Nucleic Acid Outlines" (V. R. POTTER, Burgess Publishing Comp. Minneapolis), where further literature and more detailed discussions may be found. Facts and theories will be dealt with, but not lists of references. Therefore it is not possible to follow in all cases the historical development of an idea and to admowledge all publications which might be important and inter esting from another point of view. Very little is mentioned about methods in the field of nucleic acids.