Download Free Chemicals And Fuels From Bio Based Building Blocks Book in PDF and EPUB Free Download. You can read online Chemicals And Fuels From Bio Based Building Blocks and write the review.

An up-to-date and two volume overview of recent developments in the field of chemocatalytic and enzymatic processes for the transformation of renewable material into essential chemicals and fuels. Experts from both academia and industry discuss catalytic processes currently under development as well as those already in commercial use for the production of bio-fuels and bio-based commodity chemicals. As such, they cover drop-in commodity chemicals and fuels, as well as bio-based monomers and polymers, such as acrylic acid, glycols, polyesters and polyolefins. In addition, they also describe reactions applied to waste and biomass valorization and integrated biorefining strategies. With its comprehensive coverage of the topic, this is an indispensable reference for chemists working in the field of catalysis, industrial chemistry, sustainable chemistry, and polymer synthesis.
An up-to-date and two volume overview of recent developments in the field of chemocatalytic and enzymatic processes for the transformation of renewable material into essential chemicals and fuels. Experts from both academia and industry discuss catalytic processes currently under development as well as those already in commercial use for the production of bio-fuels and bio-based commodity chemicals. As such, they cover drop-in commodity chemicals and fuels, as well as bio-based monomers and polymers, such as acrylic acid, glycols, polyesters and polyolefins. In addition, they also describe reactions applied to waste and biomass valorization and integrated biorefining strategies. With its comprehensive coverage of the topic, this is an indispensable reference for chemists working in the field of catalysis, industrial chemistry, sustainable chemistry, and polymer synthesis.
Improvements in Bio-Based Building Blocks Production Through Process Intensification and Sustainability Concepts discusses new information on the production and cost of bio-based building blocks. From a technical point-of-view, almost all industrial materials made from fossil resources can be substituted using bio-based counterparts. However, the cost of bio-based production in many cases exceeds the cost of petrochemical production. In addition, new products must be proven to perform at least as good as their petrochemical equivalents, have a lower environmental impact, meet consumer demand for environmentally-friendly products, factor in population growth, and account for limited supplies of non-renewables. This book outlines the application of process intensification techniques which allow for the generation of clean, efficient and economical processes for bio-based chemical blocks production. - Includes synthesis and process design strategies for intensified processes - Describes multi-objective optimization applied to the production of bio-based building blocks - Presents the controllability of processes where the production of bio-based building blocks is involved - Provides examples using aspen and MATLAB - Introduces several sustainable indexes to evaluate production processes - Presents process intensification techniques to improve performance in productive processes
Biomass, Biofuels, Biochemicals: Recent Advances in Development of Platform Chemicals provides a detailed overview on the experimentally developed methods that facilitate platform chemicals derivation from biomass-based substrates with robust catalyst systems. In addition, the book highlights the green chemistry approach towards platform chemical production. Chapters discuss platform chemicals and global market volumes, the optimization of process schemes and reaction parameters with respect to achieving a high yield of targeted platform chemicals, such as sugars and furonic compounds by modifying the respective catalytic system, the influence of solvents on reaction selectivity and product distribution, and the long-term stability of employed catalysts. Overall, the objectives of the book are to provide the reader with an understanding of the societal importance of platform chemicals, an assessment of the techno-economic viability of biomass valorization processes, catalyst design for a specific reaction, and the design of a catalytic system. - Covers recent developments on platform chemicals - Provides comprehensive technological developments on specific platform chemicals - Covers organic transformations, catalytic synthesis, thermal stability, reaction parameters and solvent effect - Includes case studies on the production of a number of chemicals, such as Levulinic acid, glycerol, phenol derivatives, and more
The editors and authors, with backgrounds in academia and industry, tie together recent and established technologies for the upcoming change to sustainable industrial chemistry. The extensive worldwide activities towards that goal are exemplified with a series of green processes. Some of these processes are already commercially applied (squalene to squalane, hydraulic fluids from vegetable oils, biosourced polycarbonates), others are ready for a large scale implementation (glycerol to acrylic acid, biosourced acrylonitrile and levulinic acid, polyamides from fatty nitriles-esters hydrogenation, butadiene from bioethanol) or are being developed (cyclic carbonates from epoxides, selective pyrolysis of biomass). This book is an indispensable source for the researchers and professionals who work for a greener chemical industry. The chapters have been arranged to guide students through the design of new processes for more sustainable chemistry, using case studies as examples.
Integrated Biorefineries: Design, Analysis, and Optimization examines how to create a competitive edge in biorefinery innovation through integration into existing processes and infrastructure. Leading experts from around the world working in design, synthesis, and optimization of integrated biorefineries present the various aspects of this complex
Written for a wide variety of biotechnologists, this book provides a major review of the state-of-the-art in bioethanol production technologies, enzymatic biomass conversion, and biodiesel. It also provides a detailed explanation of a breakthrough in photosynthetic water splitting which could result in a doubling of the efficiency of solar energy conversion by green plants. The book covers production of lactic acid, succinic acid, 1,3-propanediol, 2,3-butanediol, and polyhydroxybutyrate and xylitol. It also includes a chapter on synthesis-gas fermentation.
We rely upon plastics for a great many functions in everyday life, from the cases of consumer electronics to disposable cutlery, plastics are versatile and convenient. However, with the supply of fossil fuels from which fossil-based plastics are derived becoming smaller and more expensive the need for alternatives is becoming increasingly apparent. Policy makers, environmentalists and consumers are increasing pressure on plastics manufacturers to look for greener alternatives to fossil-based plastics. Bioplastics are materials that are derived wholly or partially from biomass feedstocks, making them renewable, whilst maintaining the desirable properties of fossil-based plastics. Many, although not all, bioplastics are also more readily degradable than conventional plastics, a property increasingly desired by consumers. A variety of different bioplastics have already been developed and the field continues to grow. This book provides a comprehensive overview of the diverse subjects relating to bioplastics, including materials science, manufacture and processing and social and environmental impacts. It provides a valuable introduction both for those studying plastics at a graduate level and those starting to work in the field.
Advanced Bioprocessing for Alternative Fuels, Bio-based Chemicals, and Bioproducts: Technologies and Approaches for Scale-Up and Commercialization demonstrates novel systems that apply advanced bioprocessing technologies to produce biofuels, bio-based chemicals, and value-added bioproducts from renewable sources. The book presents the use of novel oleaginous microorganisms and utilization strategies for applications of advanced bioprocessing technology in biofuels production and thoroughly depicts the technological breakthroughs of value added bioproducts. It also aides in the design, evaluation and production of biofuels by describing metabolic engineering and genetic manipulation of biofuels feedstocks. Users will find a thorough overview of the most recent discoveries in biofuels research and the inherent challenges associated with scale up. Emphasis is placed on technological milestones and breakthroughs in applications of new bioprocessing technologies for biofuels production. Its essential information can be used to understand how to incorporate advanced bioprocessing technologies into the scaling up of laboratory technologies to industrial applications while complying with biofuels policies and regulations. - Presents the use of novel oleaginous microorganisms and utilization strategies for the applications of advanced technologies in biofuels production - Provides a basis for technology assessments, progress and advances, as well as the challenges associated with biofuels at industrial scale - Describes, in detail, technologies for metabolic engineering and genetic manipulation of biofuels feedstocks, thus aiding in the design, evaluation and production of advanced biofuels
This updated edition presents topical knowledge and technologies for the thermal, chemo- and enzymatic-catalytic conversion of biomass into chemicals, materials and fuels. International experts from academia and industry cover the complete value chain from raw materials into final products. A new focus discusses feedstock, processes and products in potential concepts of future biorefining.