Download Free Chemical Vapor Deposition Of Tungsten And Tungsten Silicides For Vlsi Ulsi Applications Book in PDF and EPUB Free Download. You can read online Chemical Vapor Deposition Of Tungsten And Tungsten Silicides For Vlsi Ulsi Applications and write the review.

Semiconductor equipment modeling has in recent years become a field of great interest, because it offers the potential to support development and optimization of manufacturing equipment and hence reduce the cost and improve the quality of the reactors. This book is the result of two parallel lines of research dealing with the same subject - Modeling of Tungsten CVD processes -, which were per formed independently under very different boundary conditions. On the one side, Chris Kleijn, working in an academic research environment, was able to go deep enough into the subject to laya solid foundation and prove the validity of all the assumptions made in his work. On the other side, Christoph Werner, working in the context of an industrial research lab, was able to closely interact with manufacturing and development engineers in a modern submicron semiconductor processing line. Because of these different approaches, the informal collaboration during the course of the projects proved to be extremely helpful to both sides, even though - or perhaps because - different computer codes, different CVD reactors and also slightly different models were used. In spite of the inconsistencies which might arise from this double approach, we feel that the presentation of both sets of results in one book will be very useful for people working in similar projects.
An authoritative, systematic, and comprehensive description of current CMP technology Chemical Mechanical Planarization (CMP) provides the greatest degree of planarization of any known technique. The current standard for integrated circuit (IC) planarization, CMP is playing an increasingly important role in other related applications such as microelectromechanical systems (MEMS) and computer hard drive manufacturing. This reference focuses on the chemical aspects of the technology and includes contributions from the foremost experts on specific applications. After a detailed overview of the fundamentals and basic science of CMP, Microelectronic Applications of Chemical Mechanical Planarization: Provides in-depth coverage of a wide range of state-of-the-art technologies and applications Presents information on new designs, capabilities, and emerging technologies, including topics like CMP with nanomaterials and 3D chips Discusses different types of CMP tools, pads for IC CMP, modeling, and the applicability of tribometrology to various aspects of CMP Covers nanotopography, CMP performance and defect profiles, CMP waste treatment, and the chemistry and colloidal properties of the slurries used in CMP Provides a perspective on the opportunities and challenges of the next fifteen years Complete with case studies, this is a valuable, hands-on resource for professionals, including process engineers, equipment engineers, formulation chemists, IC manufacturers, and others. With systematic organization and questions at the end of each chapter to facilitate learning, it is an ideal introduction to CMP and an excellent text for students in advanced graduate courses that cover CMP or related semiconductor manufacturing processes.
Chemical Mechanical Planarization (CMP) plays an important role in today's microelectronics industry. With its ability to achieve global planarization, its universality (material insensitivity), its applicability to multimaterial surfaces, and its relative cost-effectiveness, CMP is the ideal planarizing medium for the interlayered dielectrics and metal films used in silicon integrated circuit fabrication. But although the past decade has seen unprecedented research and development into CMP, there has been no single-source reference to this rapidly emerging technology-until now. Chemical Mechanical Planarization of Microelectronic Materials provides engineers and scientists working in the microelectronics industry with unified coverage of both the fundamental mechanisms and engineering applications of CMP. Authors Steigerwald, Murarka, and Gutmann-all leading CMP pioneers-provide a historical overview of CMP, explain the various chemical and mechanical concepts involved, describe CMP materials and processes, review the latest scientific data on CMP worldwide, and offer examples of its uses in the microelectronics industry. They provide detailed coverage of the CMP of various materials used in the making of microcircuitry: tungsten, aluminum, copper, polysilicon, and various dielectric materials, including polymers. The concluding chapter describes post-CMP cleaning techniques, and most chapters feature problem sets to assist readers in developing a more practical understanding of CMP. The only comprehensive reference to one of the fastest growing integrated circuit manufacturing technologies, Chemical Mechanical Planarization of Microelectronic Materials is an important resource for research scientists and engineers working in the microelectronics industry. An indispensable resource for scientists and engineers working in the microelectronics industry Chemical Mechanical Planarization of Microelectronic Materials is the only comprehensive single-source reference to one of the fastest growing integrated circuit manufacturing technologies. It provides engineers and scientists who work in the microelectronics industry with unified coverage of both the fundamental mechanisms and engineering applications of CMP, including: * The history of CMP * Chemical and mechanical underpinnings of CMP * CMP materials and processes * Applications of CMP in the microelectronics industry * The CMP of tungsten, aluminum, copper, polysilicon, and various dielectrics, including polymers used in integrated circuit fabrication * Post-CMP cleaning techniques * Chapter-end problem sets are also included to assist readers in developing a practical understanding of CMP.
CVD (chemical vapor deposition) technology is receiving much interest in the scientific community, in particular for synthesizing new materials with tailored chemical composition and physical properties that offer multiple functionality. Multiphase or multilayered films, functionally graded materials (FGMs), "smart" material structures and nanocomposites are just a few examples of the new classes of materials being produced via CVD. This third volume in the series from MRS offers an interdisciplinary perspective on technological issues relevant to CVD materials and processes, and provides a forum for the exchange of new scientific results. Topics include: fundamentals, modeling and diagnostics; process/microstructure/property relationships; diamond, cubic boron nitride and related materials; organometallic chemical vapor deposition and novel approaches.
The Science and Engineering of Microelectronic Fabrication provides an introduction to microelectronic processing. Geared towards a wide audience, it may be used as a textbook for both first year graduate and upper level undergraduate courses and as a handy reference for professionals. The text covers all the basic unit processes used to fabricate integrated circuits including photolithography, plasma and reactive ion etching, ion implantation, diffusion, oxidation, evaporation, vapor phase epitaxial growth, sputtering and chemical vapor deposition. Advanced processing topics such as rapid thermal processing, nonoptical lithography, molecular beam epitaxy, and metal organic chemical vapor deposition are also presented. The physics and chemistry of each process is introduced along with descriptions of the equipment used for the manufacturing of integrated circuits. The text also discusses the integration of these processes into common technologies such as CMOS, double poly bipolar, and GaAs MESFETs. Complexity/performance tradeoffs are evaluated along with a description of the current state-of-the-art devices. Each chapter includes sample problems with solutions. The book also makes use of the process simulation package SUPREM to demonstrate impurity profiles of practical interest.
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.
The feature sizes of microelectronic devices have entered the deep submicron regime. The process integration and structure-properties control of the multilevel metal circuitry demand an interdisciplinary interaction and understanding between manufacturing and research. To realize the vision presented in the national technology road map, material and technological challenges will need to be overcome. For example Cu conductor and its barrier metals and low-dielectric constant insulators are at issue. For materials processing, chemical-mechanical planarization and low-temperature filling of high-aspect ratio vias are challenges. For materials examination, the metrology of submicron structures is nontrivial and for materials reliability, the interplay among multiple driving forces and the response in small-dimension microstructures are intriguing. These issues are the focus of this book from MRS. Topics include: road map, technology and metrology of submicron device structures; reliability issues for Cu metallization; Al interconnects and vias; barrier metal; interlevel low-K dielectrics and contact to Si and compound semiconductors.