Download Free Chemical Thermodynamics Of Solid Solutions Of Interest In Radioactive Waste Management Book in PDF and EPUB Free Download. You can read online Chemical Thermodynamics Of Solid Solutions Of Interest In Radioactive Waste Management and write the review.

This volume provides a state-of-the-art report on the modelling of aqueous-solid solution systems by the combined use of chemical thermodynamics and experimental and computational techniques. These systems are ubiquitous in nature and therefore intrinsic to the understanding and quantification of radionuclide containment and retardation processes present in geological repositories of radioactive waste. The various approaches are illustrated with case studies from the literature
This volume provides a state-of-the-art report on the modelling of aqueous-solid solution systems by the combined use of chemical thermodynamics and experimental and computational techniques. These systems are ubiquitous in nature and therefore intrinsic to the understanding and quantification of radionuclide containment and retardation processes present in geological repositories of radioactive waste. Representative cases for study have been chosen from the radioactive waste literature to illustrate the application of the various approaches. This report has been prepared by a team of four le.
This is the second volume in a series of critical reviews of the chemical thermodynamic data of those elements of particular importance in the safety assessment modeling of high-level radioactive waste storage and disposal facilities. The objective of these reviews is to provide a set of reliable thermodynamic data that can be used to describe the behaviour of these elements under conditions relevant for radioactive waste disposal systems and the geochemical environments. The present volume is a review of experimental data reported in the literature for americium. On a few occasions, where no data existed, comparisons and estimates were made based on experimental data on analog lanthanide elements. The basic philosophy was to develop a minimum set of solid phases and solution species of americium that would fit all experimental data being reviewed.
This extensively updated new edition of the widely acclaimed Treatise on Geochemistry has increased its coverage beyond the wide range of geochemical subject areas in the first edition, with five new volumes which include: the history of the atmosphere, geochemistry of mineral deposits, archaeology and anthropology, organic geochemistry and analytical geochemistry. In addition, the original Volume 1 on "Meteorites, Comets, and Planets" was expanded into two separate volumes dealing with meteorites and planets, respectively. These additions increased the number of volumes in the Treatise from 9 to 15 with the index/appendices volume remaining as the last volume (Volume 16). Each of the original volumes was scrutinized by the appropriate volume editors, with respect to necessary revisions as well as additions and deletions. As a result, 27% were republished without major changes, 66% were revised and 126 new chapters were added. In a many-faceted field such as Geochemistry, explaining and understanding how one sub-field relates to another is key. Instructors will find the complete overviews with extensive cross-referencing useful additions to their course packs and students will benefit from the contextual organization of the subject matter Six new volumes added and 66% updated from 1st edition. The Editors of this work have taken every measure to include the many suggestions received from readers and ensure comprehensiveness of coverage and added value in this 2nd edition The esteemed Board of Volume Editors and Editors-in-Chief worked cohesively to ensure a uniform and consistent approach to the content, which is an amazing accomplishment for a 15-volume work (16 volumes including index volume)!
The Nagra/PSI Chemical Thermodynamic Data Base 01/01 is an encyclopedia of thermodynamic data recommended for environmental studies. The data base focuses on elements commonly found as major solutes in natural waters, and on actinides and fission products relevant for radioactive waste disposal projects. It is the official chemical thermodynamic data base used in Swiss radioactive waste disposal projects. The detailed discussion of every number recommended in this encyclopedia is the result of a multi man-year project of the Paul Scherrer Institut (PSI), a Swiss National Lab. The five authors of this work have many years of experience in research, data base development and the application of thermodynamic data in environmental studies. The data included for many elements are based on their reviews of the basic literature. The data base also includes additional data selected by the authors from recommendations of other experts in ground- water geochemistry and of the international data base project of the Nuclear Energy Agency (NEA).This report is indispensable for every scientist working in the field of environmental studies as the comprehensive source of information on the quality of the thermodynamic data governing particular problems in environmental geochemistry, especially those concerned with the fate of hazardous substances. This enables graduate students, researchers and consultants, as well as regulators and reviewers of scientific papers to assess the scientific basis of environmental modeling studies. The encyclopedia can be used as a stand-alone source of knowledge but amplereferences are provided for readers who wish to go beyond the level of discussion in the book. An electronic version of the data base and a data base management program is available for download at our homepage (http://les.web.psi.ch/TDBbook.htm).
This book presents a new suite of benchmarks for and examples of porous media mechanics collected over the last two years. It continues the assembly of benchmarks and examples for porous media mechanics published in 2014. The book covers various applications in the geosciences, geotechnics, geothermal energy, and geological waste deposition. The analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, and even climate change. In order to assess the feasibility and safety of geotechnical applications, process-based modelling is the only tool that can effectively quantify future scenarios, a fact which also creates a huge burden of responsibility concerning the reliability of computational tools. The book shows that benchmarking offers a suitable methodology for verifying the quality of modelling tools based on best practices, and together with code comparison fosters community efforts. It also provides a brief introduction to the DECOVALEX, SeSBench and MOMAS initiatives. This benchmark book is part of the OpenGeoSys initiative – an open source project designed to share knowledge and experience in environmental analysis and scientific computation.
This volume is the eleventh in the OECD Nuclear Energy Agency (NEA) ldquo;Chemical Thermodynamicsrdquo; series. It is based on a critical review of the thermodynamic properties of thorium, its solid compounds and aqueous complexes, initiated as part of the NEA Thermochemical Database Project Phase III (TDB III). The database system developed at the OECD/NEA Data Bank ensures consistency not only within the recommended data sets of thorium, but also amongst all the data sets published in the series. This volume will be of particular interest to scientists carrying out performance assessments of deep geological disposal sites for radioactive waste.
Geological disposal has been internationally adopted as the most effective approach to assure the long-term, safe disposition of the used nuclear fuels and radioactive waste materials produced from nuclear power generation, nuclear weapons programs, medical, treatments, and industrial applications. Geological repository systems take advantage of natural geological barriers augmented with engineered barrier systems to isolate these radioactive materials from the environment and from future populations. Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste critically reviews the state-of-the-art technologies, scientific methods, regulatory developments, and social engagement approaches directly related to the implementation of geological repository systems. Part one introduces geological disposal, including multiple-barrier geological repositories, as well as reviewing the impact of nuclear fuel recycling practices and underground research laboratory activities on the development of disposal concepts. Part two reviews geological repository siting in different host rocks, including long-term stability analysis and radionuclide transport modelling. Reviews of the range of engineered barrier systems, including waste immobilisation technologies, container materials, low pH concretes, clay-based buffer and backfill materials, and barrier performance are presented in Part three. Part four examines total system performance assessment and safety analyses for deep geological and near-surface disposal, with coverage of uncertainty analysis, use of expert judgement for decision making, and development and use of knowledge management systems. Finally, Part five covers regulatory and social approaches for the establishment of geological disposal programs, from the development of radiation standards and risk-informed, performance-based regulations, to environmental monitoring and social engagement in the siting and operation of repositories. With its distinguished international team of contributors, Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste is a standard reference for all nuclear waste management and geological repository professionals and researchers. Critically reviews the state-of-the-art technologies, scientific methods, regulatory developments, and social engagement approaches related to the implementation of geological repository systems Chapters introduce geological disposal and review the development of disposal concepts Examines long-term stability analysis, the range of engineered barrier systems and barrier performance
Understanding in detail the ion partitioning in mineralwater interactions is of fundamental importance to geochemical studies and ultimately to society. The solid-solution properties of minerals are a significant part of the complexity, and also the importance, of these ion-partitioning reactions.