Download Free Chemical Synthesis Of Nucleoside Analogues Book in PDF and EPUB Free Download. You can read online Chemical Synthesis Of Nucleoside Analogues and write the review.

Compiles current tested and proven approaches to synthesize novel nucleoside analogues Featuring contributions from leading synthetic chemists from around the world, this book brings together and describes tested and proven approaches for the chemical synthesis of common families of nucleoside analogues. Readers will learn to create new nucleoside analogues with desired therapeutic properties by using a variety of methods to chemically modify natural nucleosides, including: Changes to the heterocyclic base Modification of substituents at the sugar ring Replacement of the furanose ring by a different carbo- or heterocyclic ring Introduction of conformational restrictions Synthesis of enantiomers Preparation of hydrolitically stable C-nucleosides Chemical Synthesis of Nucleoside Analogues covers all the major classes of nucleosides, including pronucleotides, C-nucleosides, carbanucleosides, and PNA monomers which have shown great promise as starting points for the synthesis of nucleoside analogues. The book also includes experimental procedures for key reactions related to the synthesis of nucleoside analogues, providing a valuable tool for the preparation of a number of different compounds. Throughout the book, chemical schemes and figures help readers better understand the chemical structures of nucleoside analogues and the methods used to synthesize them. Extensive references serve as a gateway to the growing body of original research studies and reviews in the field. Synthetically modified nucleosides have proven their value as therapeutic drugs, in particular as antiviral and antitumor agents. However, many of these nucleoside analogues have undesirable side effects. With Chemical Synthesis of Nucleoside Analogues as their guide, researchers have a new tool for synthesizing a new generation of nucleoside analogues that can be used as therapeutic drugs with fewer unwanted side effects.
A review of innovative tools for creative nucleic acid chemists that open the door to novel probes and therapeutic agents Nucleic acids continue to gain importance as novel diagnostic and therapeutic agents. With contributions from noted scientists and scholars, Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives is a practical reference that includes a wide range of approaches for the synthesis of designer nucleic acids and their derivatives. The book covers enzymatic (including chemo-enzymatic) methods, with a focus on the synthesis and incorporation of modified nucleosides. The authors also offer a review of innovative approaches for the non-enzymatic chemical synthesis of nucleic acids and their analogs and derivatives, highlighting especially challenging species. The book offers a concise review of the methods that prepare novel and heavily modified polynucleotides in sufficient amount and purity for most clinical and research applications. This important book: -Presents a timely and topical guide to the synthesis of designer nucleic acids and their derivatives -Addresses the growing market for nucleotide-derived pharmaceuticals used as anti-infectives and chemotherapeutic agents, as well as fungicides and other agrochemicals. -Covers novel methods and the most recent trends in the field -Contains contributions from an international panel of noted scientistics Written for biochemists, medicinal chemists, natural products chemists, organic chemists, and biotechnologists, Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives is a practice-oriented guide that reviews innovative methods for the enzymatic as well as non-enzymatic synthesis of nucleic acid species.
The book covers up-to-date information on nucleosides and antiviral chemotherapy contributed by the world experts in the field of nucleoside. This book is the result of a meeting honoring Dr. Jack J. Fox, who was one of the pioneers in nucleoside chemistry and chemotherapy. This book consists of 15 excellent chapters in the area, which include topics from recent synthetic methodologies, nucleoside kinase implicated in chemotherapy and drug design, excellent reviews on antiviral agents, nucleoside metabolism/mode of action in parasites, new compounds under clinical and pre-clinical trials, IMPDH inhibitors to review on nucleoside prodrugs.
While adenosine triphosphate (ATP) is described as the universal currency of energy in all living organisms at the cellular level, the actual power lies in its phosphate tail. This book is the first dedicated to the field of nucleoside triphosphate (NTP). Its 13 chapters encompass the contributions of twenty scientists from both academia and industry. It provides collective information on the chemical, physiochemical, and biological properties of both natural and modified NTP and their application in life sciences. Three chapters review families of enzymes that depend on nucleotides for assembling DNA and RNA molecules. The appendix includes supporting NMR data.
Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides describes the procedures and protocols related to the modification of nucleosides, nucleotides and oligonucleotides via Pd-mediated cross-coupling processes. The book highlights the growing area of nucleic acid modification and how Pd-mediated coupling reactions can assist this development. Users will find key synthetic protocols for these reactions in this latest volume in the Latest Trends in Palladium Chemistry series. As most of the research in the field of antiviral agents has centered on the use of modified nucleosides that have exhibited promising activity, this book provides an up-to-date reference for both professionals in industry and other interested parties. - Provides synthetic routes for useful nucleoside molecules, information otherwise found only through time-consuming literature searches - Covers metal-mediated and metal-catalyzed cross coupling processes of nucleosides and related compounds - Includes Suzuki-Miyaura, Stille and Sonogashira reactions, as well as C-H bond functionalization - Highlights the growing area of nucleic acid modification and how Pd-mediated coupling reactions can assist
The structure, function and reactions of nucleic acids are central to molecular biology and are crucial for the understanding of complex biological processes involved. Revised and updated Nucleic Acids in Chemistry and Biology 3rd Edition discusses in detail, both the chemistry and biology of nucleic acids and brings RNA into parity with DNA. Written by leading experts, with extensive teaching experience, this new edition provides some updated and expanded coverage of nucleic acid chemistry, reactions and interactions with proteins and drugs. A brief history of the discovery of nucleic acids is followed by a molecularly based introduction to the structure and biological roles of DNA and RNA. Key chapters are devoted to the chemical synthesis of nucleosides and nucleotides, oligonucleotides and their analogues and to analytical techniques applied to nucleic acids. The text is supported by an extensive list of references, making it a definitive reference source. This authoritative book presents topics in an integrated manner and readable style. It is ideal for graduate and undergraduates students of chemistry and biochemistry, as well as new researchers to the field.
• Up-to-date review on the chemistry and biology of nucleosides • Modern synthetic methodology • Comprehensive coverage of antiviral nucleosidesThis book summarizes the recent advances in nucleosides chemistry and chemotherapy over the past 10-15 years. It covers recently discovered nucleoside antiviral agents, their therapeutic aspects and biochemistry, and also extensive reviews on their chiral synthesis.
Good methods must be reliable, well-tested, and honed to minimize the time and expense required to achieve the desired results. CPNC provides a continuously growing and evolving set of protocols that allows researchers to benefit from the experience of other researchers around the world. The core manual provides a comprehensive set of protocols that have been compiled, revised, and streamlined over the last 6 years. Quarterly updates provide new protocols in emerging areas of research as well as continued advances and new applications for fundamental methods. The book is designed to grow and change with the field of nucleic acid chemistry. Fundamental nucleoside chemistry methods include sugar-base condensation, phosphorylation, and nucleoside protection. Methods for oligonucleotide synthesis include H-phosphonate and phosphoramidite approaches, solid-phase and solution-phase synthesis, large-scale synthesis, synthesis for modified and unmodified oligonucleotides, conjugation of oligonucleotides, synthesis without base protection, and synthesis on microarrays. More specialized synthetic methods include synthesis of biologically active nucleosides and prodrugs. Purification and characterization methods are detailed. Advanced methods include biophysical analysis, combinatorial methods, and nanotechnology. Each protocol includes rationale for choosing appropriate methods, step-by-step procedures, complete recipes, anticipated results, characterization data, and troubleshooting, as well as background and recommended reading. The level of procedural detail is far beyond that found in the research literature, and tips and comments from authors are geared towards ensuring reliable duplication in the laboratory.
This book presents the latest knowledge on a broad range of topics relating to the synthesis of natural and artificial oligonucleotides with therapeutic potential. Nucleic acid-based therapeutics are attracting much attention, and numerous therapeutic oligonucleotides, such as antisense oligonucleotides, siRNAs, splice-switching oligonucleotides, and nucleic acid aptamers, are being evaluated in clinical trials for the treatment of a variety of diseases. Synthesis of Therapeutic Oligonucleotides covers a broad range of topics in the field that are of high relevance to researchers, including the synthesis of natural and chemically modified oligonucleotides, the development of novel nucleic acid analogs, industrial scale synthesis and purification of oligonucleotides, and important aspects of chemistry, manufacturing, and controls (CMC). The aim is to provide new insights and inspire fresh ideas in nucleic acid chemistry that may ultimately lead to novel concepts and techniques and the discovery of more effective nucleic acid drugs. The book will be of high value for both established researchers in the field and students intending to specialize in nucleic acid chemistry research.
Endlich ein Buch zu Click-Reaktionen mit Schwerpunkt auf der organischen Synthese. Beschrieben werden das Click-Konzept, die zugrunde liegenden Mechanismen und Hauptanwendungsgebiete. NÜTZLICH: Die Click-Chemie ist ein wirkungsvoller Ansatz, um auf einfache Weise komplexe organische Moleküle aus verfügbaren Ausgangsmaterialien zu erzeugen ? der Traum jedes Organikers. EINZIGARTIGER SCHWERPUNKT: Aufgrund des besonderen Schwerpunkts auf der organischen Synthese ist dieses Buch für jeden Synthesechemiker von hohem Interesse. HILFREICH: Click-Reaktionen sind stereospezifisch, einfach durchzuführen, hoch ergiebig und lassen sich in einfach zu entfernenden oder nicht schädlichen Lösungsmitteln durchführen. INTERDISZIPLINÄR: Das Click-Konzept ist bei der Herstellung natürlicher Produkte, bioaktiver Verbindungen, von Kohlenhydraten, Arzneimitteln, Polymeren, supramolekularer Strukturen und Materialien weit verbreitet.