Download Free Chemical Reaction And Reactor Engineering Book in PDF and EPUB Free Download. You can read online Chemical Reaction And Reactor Engineering and write the review.

This book presents an authoritative progress report that will remain germane to the topic and prove to be a substantial inspiration to further progress. It is valuable to academic and industrial practitioners of the art and science of chemical reaction and reactor engineering.
Appropriate for a one-semester undergraduate or first-year graduate course, this text introduces the quantitative treatment of chemical reaction engineering. It covers both homogeneous and heterogeneous reacting systems and examines chemical reaction engineering as well as chemical reactor engineering. Each chapter contains numerous worked-out problems and real-world vignettes involving commercial applications, a feature widely praised by reviewers and teachers. 2003 edition.
Filling a longstanding gap for graduate courses in the field, Chemical Reaction Engineering: Beyond the Fundamentals covers basic concepts as well as complexities of chemical reaction engineering, including novel techniques for process intensification. The book is divided into three parts: Fundamentals Revisited, Building on Fundamentals, and Beyon
FUNDAMENTALS OF CHEMICAL REACTOR ENGINEERING A comprehensive introduction to chemical reactor engineering from an industrial perspective In Fundamentals of Chemical Reactor Engineering: A Multi-Scale Approach, a distinguished team of academics delivers a thorough introduction to foundational concepts in chemical reactor engineering. It offers readers the tools they need to develop a firm grasp of the kinetics and thermodynamics of reactions, hydrodynamics, transport processes, and heat and mass transfer resistances in a chemical reactor. This textbook describes the interaction of reacting molecules on the molecular scale and uses real-world examples to illustrate the principles of chemical reactor analysis and heterogeneous catalysis at every scale. It includes a strong focus on new approaches to process intensification, the modeling of multifunctional reactors, structured reactor types, and the importance of hydrodynamics and transport processes in a chemical reactor. With end-of-chapter problem sets and multiple open-ended case studies to promote critical thinking, this book also offers supplementary online materials and an included instructor’s manual. Readers will also find: A thorough introduction to the rate concept and species conservation equations in reactors, including chemical and flow reactors and the stoichiometric relations between reacting species A comprehensive exploration of reversible reactions and chemical equilibrium, including the thermodynamics of chemical reactions and different forms of the equilibrium constant Practical discussions of chemical kinetics and analysis of batch reactors, including batch reactor data analysis In-depth examinations of ideal flow reactors, CSTR, and plug flow reactor models Ideal for undergraduate and graduate chemical engineering students studying chemical reactor engineering, chemical engineering kinetics, heterogeneous catalysis, and reactor design, Fundamentals of Chemical Reactor Engineering is also an indispensable resource for professionals and students in food, environmental, and materials engineering.
This book presents an authoritative progress report that will remain germane to the topic and prove to be a substantial inspiration to further progress. It is valuable to academic and industrial practitioners of the art and science of chemical reaction and reactor engineering.
Reaction Engineering clearly and concisely covers the concepts and models of reaction engineering and then applies them to real-world reactor design. The book emphasizes that the foundation of reaction engineering requires the use of kinetics and transport knowledge to explain and analyze reactor behaviors. The authors use readily understandable language to cover the subject, leaving readers with a comprehensive guide on how to understand, analyze, and make decisions related to improving chemical reactions and chemical reactor design. Worked examples, and over 20 exercises at the end of each chapter, provide opportunities for readers to practice solving problems related to the content covered in the book. Seamlessly integrates chemical kinetics, reaction engineering, and reactor analysis to provide the foundation for optimizing reactions and reactor design Compares and contrasts three types of ideal reactors, then applies reaction engineering principles to real reactor design Covers advanced topics, like microreactors, reactive distillation, membrane reactors, and fuel cells, providing the reader with a broader appreciation of the applications of reaction engineering principles and methods
The role of the chemical reactor is crucial for the industrial conversion of raw materials into products and numerous factors must be considered when selecting an appropriate and efficient chemical reactor. Chemical Reaction Engineering and Reactor Technology defines the qualitative aspects that affect the selection of an industrial chemical reactor and couples various reactor models to case-specific kinetic expressions for chemical processes. Offering a systematic development of the chemical reaction engineering concept, this volume explores: Essential stoichiometric, kinetic, and thermodynamic terms needed in the analysis of chemical reactors Homogeneous and heterogeneous reactors Residence time distributions and non-ideal flow conditions in industrial reactors Solutions of algebraic and ordinary differential equation systems Gas- and liquid-phase diffusion coefficients and gas-film coefficients Correlations for gas-liquid systems Solubilities of gases in liquids Guidelines for laboratory reactors and the estimation of kinetic parameters The authors pay special attention to the exact formulations and derivations of mass energy balances and their numerical solutions. Richly illustrated and containing exercises and solutions covering a number of processes, from oil refining to the development of specialty and fine chemicals, the text provides a clear understanding of chemical reactor analysis and design.
Designed to give chemical engineers background for managing chemical reactions, this text examines the behavior of chemical reactions and reactors; conservation equations for reactors; heterogeneous reactions; fluid-fluid and fluid-solid reaction systems; heterogeneous catalysis and catalytic kinetics; diffusion and heterogeneous catalysis; and analyses and design of heterogeneous reactors. 1976 edition.
"The fourth edition of Elements of Chemical Reaction Engineering is a completely revised version of the book. It combines authoritative coverage of the principles of chemical reaction engineering with an unsurpassed focus on critical thinking and creative problem solving, employing open-ended questions and stressing the Socratic method. Clear and organized, it integrates text, visuals, and computer simulations to help readers solve even the most challenging problems through reasoning, rather than by memorizing equations."--BOOK JACKET.
The role of the chemical reactor is crucial for the industrial conversion of raw materials into products and numerous factors must be considered when selecting an appropriate and efficient chemical reactor. Chemical Reaction Engineering and Reactor Technology defines the qualitative aspects that affect the selection of an industrial chemical reactor and couples various reactor models to case-specific kinetic expressions for chemical processes. Thoroughly revised and updated, this much-anticipated Second Edition addresses the rapid academic and industrial development of chemical reaction engineering. Offering a systematic development of the chemical reaction engineering concept, this volume explores: essential stoichiometric, kinetic, and thermodynamic terms needed in the analysis of chemical reactors homogeneous and heterogeneous reactors reactor optimization aspects residence time distributions and non-ideal flow conditions in industrial reactors solutions of algebraic and ordinary differential equation systems gas- and liquid-phase diffusion coefficients and gas-film coefficients correlations for gas-liquid systems solubilities of gases in liquids guidelines for laboratory reactors and the estimation of kinetic parameters The authors pay special attention to the exact formulations and derivations of mass energy balances and their numerical solutions. Richly illustrated and containing exercises and solutions covering a number of processes, from oil refining to the development of specialty and fine chemicals, the text provides a clear understanding of chemical reactor analysis and design.