Download Free Chemical Process Research Book in PDF and EPUB Free Download. You can read online Chemical Process Research and write the review.

Designed to provide a comprehensive, step-by-step approach to organic process research and development in the pharmaceutical, fine chemical, and agricultural chemical industries, this book describes the steps taken, following synthesis and evaluation, to bring key compounds to market in a cost-effective manner. It describes hands-on, step-by-step, approaches to solving process development problems, including route, reagent, and solvent selection; optimising catalytic reactions; chiral syntheses; and "green chemistry." Second Edition highlights:• Reflects the current thinking in chemical process R&D for small molecules• Retains similar structure and orientation to the first edition. • Contains approx. 85% new material• Primarily new examples (work-up and prospective considerations for pilot plant and manufacturing scale-up)• Some new/expanded topics (e.g. green chemistry, genotoxins, enzymatic processes)• Replaces the first edition, although the first edition contains useful older examples that readers may refer to Provides insights into generating rugged, practical, cost-effective processes for the chemical preparation of "small molecules" Breaks down process optimization into route, reagent and solvent selection, development of reaction conditions, workup, crystallizations and more Presents guidelines for implementing and troubleshooting processes
This text discusses the functions of Process R&D (research and development), which involves the method of transforming a research synthetic procedure into a plant process and the key aspects of a synthesis that must be considered when scaling up a process. Topics consist of: basic principles of chemical development; techniques for the minimization of by-product impurities; criteria for cost-effective synthesis of enantiopure compounds by resolutions; asymmetric synthesis, and "chiral pool" strategy; synthesis for labeling substances with hydrogen or carbon isotopes; and last, licensing.
The Handbook for Chemical Process Research and Development focuses on developing processes for chemical and pharmaceutical industries. Forty years ago there were few process research and development activities in the pharmaceutical industry, partially due to the simplicity of the drug molecules. However, with the increasing structural complexity, especially the introduction of chiral centers into the drug molecules and strict regulations set by the EMA and FDA, process R&D has become one of the critical departments for pharmaceutical companies. This book assists with the key responsibility of process chemists to develop chemical processes for manufacturing pharmaceutical intermediates and final drug substances for clinical studies and commercial production.
The first guide to compile current research and frontline developments in the science of process intensification (PI), Re-Engineering the Chemical Processing Plant illustrates the design, integration, and application of PI principles and structures for the development and optimization of chemical and industrial plants. This volume updates professionals on emerging PI equipment and methodologies to promote technological advances and operational efficacy in chemical, biochemical, and engineering environments and presents clear examples illustrating the implementation and application of specific process-intensifying equipment and methods in various commercial arenas.
This book provides a comprehensive, step-by-step approach to organic process research and development in the pharmaceutical, fine chemical, and agricultural chemical industries. Process R&D describes the steps taken, following synthesis and evaluation, to bring key compounds to market in a cost-effective manner. More people are being hired for work in this area as increasing numbers of drug candidates are identified through combinatorial chemistry and high-throughput screening. The book is directed to industrial (primarily organic) chemists, and academicians (particularly those involved in a growing number of start-up companies) and students who need insight into industrial process R&D. Current books do not describe hands-on, step-by-step, approaches to solving process development problems, including route, reagent, and solvent selection; optimising catalytic reactions; chiral syntheses; and "green chemistry." "Practical Process Research and Development" will be a valuable resource for researchers, managers, and graduate students. * Provides insights into generating rugged, practical, cost-effective processes for the chemical preparation of "small molecules" * Breaks down process optimization into route, reagent and solvent selection, development of reaction conditions, workup, crystallizations and more * Includes over 100 tips for rapid process development * Presents guidelines for implementing and troubleshooting processes
Designed to provide a comprehensive, step-by-step approach to organic process research and development in the pharmaceutical, fine chemical, and agricultural chemical industries, this book describes the steps taken, following synthesis and evaluation, to bring key compounds to market in a cost-effective manner. It describes hands-on, step-by-step, approaches to solving process development problems, including route, reagent, and solvent selection; optimising catalytic reactions; chiral syntheses; and "green chemistry." Second Edition highlights: . Reflects the current thinking in chemical process R&D for small molecules . Retains similar structure and orientation to the first edition. . Contains approx. 85% new material . Primarily new examples (work-up and prospective considerations for pilot plant and manufacturing scale-up) . Some new/expanded topics (e.g. green chemistry, genotoxins, enzymatic processes) . Replaces the first edition, although the first edition contains useful older examples that readers may refer to Provides insights into generating rugged, practical, cost-effective processes for the chemical preparation of "small molecules" Breaks down process optimization into route, reagent and solvent selection, development of reaction conditions, workup, crystallizations and more Presents guidelines for implementing and troubleshooting processes
With a focus on actual industrial processes, e.g. the production of light alkenes, synthesis gas, fine chemicals, polyethene, it encourages the reader to think “out of the box” and invent and develop novel unit operations and processes. Reflecting today’s emphasis on sustainability, this edition contains new coverage of biomass as an alternative to fossil fuels, and process intensification. The second edition includes: New chapters on Process Intensification and Processes for the Conversion of Biomass Updated and expanded chapters throughout with 35% new material overall Text boxes containing case studies and examples from various different industries, e.g. synthesis loop designs, Sasol I Plant, Kaminsky catalysts, production of Ibuprofen, click chemistry, ammonia synthesis, fluid catalytic cracking Questions throughout to stimulate debate and keep students awake! Richly illustrated chapters with improved figures and flow diagrams Chemical Process Technology, Second Edition is a comprehensive introduction, linking the fundamental theory and concepts to the applied nature of the subject. It will be invaluable to students of chemical engineering, biotechnology and industrial chemistry, as well as practising chemical engineers. From reviews of the first edition: “The authors have blended process technology, chemistry and thermodynamics in an elegant manner... Overall this is a welcome addition to books on chemical technology.” – The Chemist “Impressively wide-ranging and comprehensive... an excellent textbook for students, with a combination of fundamental knowledge and technology.” – Chemistry in Britain (now Chemistry World)
Pharmaceutical process research and development is an exacting, multidisciplinary effort but a somewhat neglected discipline in the chemical curriculum. This book presents an overview of the many facets of process development and how recent advances in synthetic organic chemistry, process technology and chemical engineering have impacted on the manufacture of pharmaceuticals. In 15 concise chapters the book covers such diverse subjects as route selection and economics, the interface with medicinal chemistry, the impact of green chemistry, safety, the crucial role of physical organic measurements in gaining a deeper understanding of chemical behaviour, the role of the analyst, new tools and innovations in reactor design, purification and separation, solid state chemistry and its role in formulation. The book ends with an assessment of future trends and challenges. The book provides a valuable overview of: both early and late stage chemical development, how safe and scaleable synthetic routes are designed, selected and developed, the importance of the chemical engineering, analytical and manufacturing interfaces, the key enabling technologies, including catalysis and biocatalysis, the importance of the green chemical perspective and solid form issues. The book, written and edited by experts in the field, is a contemporary, holistic treatise, with a logical sequence for process development and mini-case histories within the chapters to bring alive different aspects of the process. It is completely pharmaceutical themed, encompassing all essential aspects, from route and reagent selection to manufacture of the active compound. The book is aimed at both graduates and postgraduates interested in a career in the pharmaceutical industry. It informs them about the breadth of the work carried out in chemical research and development departments, and gives them a feel for the challenges involved in the job. The book is also of value to academics who often understand the drug discovery arena, but have far less appreciation of the drug development area, and are thus unable to advise their students about the relative merits of careers in chemical development versus discovery.
Over the last 20 years, fundamental design concepts and advanced computer modeling have revolutionized process design for chemical engineering. Team work and creative problem solving are still the building blocks of successful design, but new design concepts and novel mathematical programming models based on computer-based tools have taken out much of the guess-work. This book presents the new revolutionary knowledge, taking a systematic approach to design at all levels.
Chemical Engineering and Chemical Process Technology is a theme component of Encyclopedia of Chemical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty Encyclopedias. Chemical engineering is a branch of engineering, dealing with processes in which materials undergo changes in their physical or chemical state. These changes may concern size, energy content, composition and/or other application properties. Chemical engineering deals with many processes belonging to chemical industry or related industries (petrochemical, metallurgical, food, pharmaceutical, fine chemicals, coatings and colors, renewable raw materials, biotechnological, etc.), and finds application in manufacturing of such products as acids, alkalis, salts, fuels, fertilizers, crop protection agents, ceramics, glass, paper, colors, dyestuffs, plastics, cosmetics, vitamins and many others. It also plays significant role in environmental protection, biotechnology, nanotechnology, energy production and sustainable economical development. The Theme on Chemical Engineering and Chemical Process Technology deals, in five volumes and covers several topics such as: Fundamentals of Chemical Engineering; Unit Operations – Fluids; Unit Operations – Solids; Chemical Reaction Engineering; Process Development, Modeling, Optimization and Control; Process Management; The Future of Chemical Engineering; Chemical Engineering Education; Main Products, which are then expanded into multiple subtopics, each as a chapter. These five volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.