Download Free Chemical Nitrogen Book in PDF and EPUB Free Download. You can read online Chemical Nitrogen and write the review.

This book presents WHO guidelines for the protection of public health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethylene, have indoor sources, are known in respect of their hazardousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmental exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. They provide a scientific basis for legally enforceable standards.
Nitrogen is unique among the non-carbon atoms in its ability to form single, double, and triple bonds with itself, giving rise to a wide range of organic-chemical groups containing several nitrogen atoms in different states and geometries. The present volume surveys the properties and chemical behaviour of all important nitrogen-rich organic-chemical groups, including azides, azimines, aziridines, diazo compounds, nitramines, nitrenes, nitrosamines, polyazine N-oxides, tetrazoles, triazanes, triazenes, and triazoles. A special focus lies on commercially important species which are used, e. g., as powerful explosives. PATAI's Chemistry of Functional Groups publishes comprehensive reviews on all aspects of specific functional groups. Each volume contains outstanding surveys on theoretical and computational aspects, NMR, MS, other spectroscopic methods and analytical chemistry, structural aspects, thermochemistry, photochemistry, synthetic approaches and strategies, synthetic uses and applications in chemical and pharmaceutical industries, biological, biochemical and environmental aspects. To date, almost 150 volumes have been published in the series.
Explores the history of the chemical element nitrogen and explains its chemistry, how it is used in industry, and its importance in our lives.
This book deals with the processes behind cycles of the phosphate and nitrogen compounds in sediment and the phosphate equilibria between the sediment and the overlying water. In most waters, excessive concentrations of these compounds causes eutrophication: rapid, choking growth of algae. The chapters of this book probe the chemicals involved in considerable detail, and offer the complete understanding needed to remediate or prevent pollution problems.
Chalcogen-nitrogen chemistry involves the study of compounds that exhibit a linkage between nitrogen and sulfur, selenium or tellurium atoms. Since the publication of A Guide to Chalcogen-Nitrogen Chemistry in 2005, the emphasis of investigations of chalcogen-nitrogen compounds has advanced from a focus on fundamental studies to the development of practical applications, as indicated by the title of this new edition. Pharmaceutical applications of organic sulfur-nitrogen compounds include drugs for the treatment of various diseases, as well as probes for locating tumour cells. From a materials perspective, carbon-containing chalcogen-nitrogen heterocycles have applications in everyday devices such as LEDs and solar cells. A new technology based on binary sulfur nitrides is being used for fingerprint detection in forensic science. As a result, this book includes seven new chapters and updates the others with extensive literature coverage of developments since 2005 while retaining earlier seminal results. This comprehensive text is essential for anyone working in the field, and the four introductory chapters emphasise general concepts that will be helpful to the non-specialist. The treatment is unique in providing a comparison of sulfur, selenium and tellurium compounds. Each chapter is designed to be self-contained, and there are extensive cross-references between chapters.
Nitrogen fixation research is presented as a rapidly developing, synergistic area of modern science, using the methods of, and accumulating data from, many fundamental branches of biology and chemistry. These include catalytic mechanisms, protein structure and function, molecular organization of genes and the regulation of their activities, biochemistry of plants and microorganisms, the signalling and surface interactions between organisms, microbial taxonomy and evolution, formal and population genetics, and ecology. The relationships between biological nitrogen fixation research and different branches of applied biology are addressed and analyzed, such as: the monitoring of genetically engineered microorganisms, selection of plant-associated microbes, plant breeding, increasing the protein content of crops, providing ecologically safe food production, and diminishing the chemical pollution of the environment. Immediate impacts and long-term prospects for nitrogen fixation research are presented: both fundamentals and applications.
The Chemical Biology of Nitrogen book provides a chemocentric approach to both the inorganic and organic chemical biology of nitrogen. Following an introduction to nitrogen trivalency the book progresses through the logic of inorganic nitrogen metabolism and organic nitrogen metabolites to nitrogen proteomics.
The Chemistry of Nitrogen
Understanding of biological nitrogen fixation has advanced with impressive rapidity during the last decade. As befits a developing area of Science, these advances have uncovered information and raised questions which will have, and indeed have had, repercussions in numerous other branches of science and its applications. This 'information explosion', to use one of to-day's cant idioms, was initiated by the discovery, by a group of scientists working in the Central Research laboratories of Dupont de Nemours, U. S. A. , of a reproducibly active, cell-free enzyme preparation from a nitrogen fixing bacterium. Full credit is due to them. But subsequent developments, albeit sometimes quite as impressive, have too often been marked by that familiar disorder of a developing field of research-the scramble to publish. It is a scramble which, at its best, may represent a laudable desire to inform colleagues of the latest developments; yet which too easily develops into an undignified rush for priority, wherewith to impress one's Board of Directors or Grant-giving Institution. This, in miniature, is the tragedy of scientific research to-day: desire for credit causes research to be published in little bulletins, notes and preliminary communications, so that only those intimately involved in the field really know what is happening (and even they may well not see the forest for the trees). Those outside the field, or working in peripheral areas, may glean something of what is going on from reviews and fragments presented at meetings, but the broad pattern of development is often elusive.