Download Free Chemical Engineering Primer With Computer Applications Book in PDF and EPUB Free Download. You can read online Chemical Engineering Primer With Computer Applications and write the review.

Taking a highly pragmatic approach to presenting the principles and applications of chemical engineering, this companion text for students and working professionals offers an easily accessible guide to solving problems using computers. The primer covers the core concepts of chemical engineering, from conservation laws all the way up to chemical kinetics, without heavy stress on theory and is designed to accompany traditional larger core texts. The book presents the basic principles and techniques of chemical engineering processes and helps readers identify typical problems and how to solve them. Focus is on the use of systematic algorithms that employ numerical methods to solve different chemical engineering problems by describing and transforming the information. Problems are assigned for each chapter, ranging from simple to difficult, allowing readers to gradually build their skills and tackle a broad range of problems. MATLAB and Excel® are used to solve many examples and the more than 70 real examples throughout the book include computer or hand solutions, or in many cases both. The book also includes a variety of case studies to illustrate the concepts and a downloadable file containing fully worked solutions to the book’s problems on the publisher’s website. Introduces the reader to chemical engineering computation without the distractions caused by the contents found in many texts. Provides the principles underlying all of the major processes a chemical engineer may encounter as well as offers insight into their analysis, which is essential for design calculations. Shows how to solve chemical engineering problems using computers that require numerical methods using standard algorithms, such as MATLAB® and Excel®. Contains selective solved examples of many problems within the chemical process industry to demonstrate how to solve them using the techniques presented in the text. Includes a variety of case studies to illustrate the concepts and a downloadable file containing fully worked solutions to problems on the publisher’s website. Offers non-chemical engineers who are expected to work with chemical engineers on projects, scale-ups and process evaluations a solid understanding of basic concepts of chemical engineering analysis, design, and calculations.
Taking a highly pragmatic approach to presenting the principles and applications of chemical engineering, this companion text for students and working professionals offers an easily accessible guide to solving problems using computers. The primer covers the core concepts of chemical engineering, from conservation laws all the way up to chemical kinetics, without heavy stress on theory and is designed to accompany traditional larger core texts. The book presents the basic principles and techniques of chemical engineering processes and helps readers identify typical problems and how to solve them. Focus is on the use of systematic algorithms that employ numerical methods to solve different chemical engineering problems by describing and transforming the information. Problems are assigned for each chapter, ranging from simple to difficult, allowing readers to gradually build their skills and tackle a broad range of problems. MATLAB and Excel® are used to solve many examples and the more than 70 real examples throughout the book include computer or hand solutions, or in many cases both. The book also includes a variety of case studies to illustrate the concepts and a downloadable file containing fully worked solutions to the book’s problems on the publisher’s website. Introduces the reader to chemical engineering computation without the distractions caused by the contents found in many texts. Provides the principles underlying all of the major processes a chemical engineer may encounter as well as offers insight into their analysis, which is essential for design calculations. Shows how to solve chemical engineering problems using computers that require numerical methods using standard algorithms, such as MATLAB® and Excel®. Contains selective solved examples of many problems within the chemical process industry to demonstrate how to solve them using the techniques presented in the text. Includes a variety of case studies to illustrate the concepts and a downloadable file containing fully worked solutions to problems on the publisher’s website. Offers non-chemical engineers who are expected to work with chemical engineers on projects, scale-ups and process evaluations a solid understanding of basic concepts of chemical engineering analysis, design, and calculations.
Engineers seek solutions to problems, and the economic viability of each potential solution is normally considered along with the technical merits. This is typically true for the petroleum sector, which includes the global processes of exploration, production, refining, and transportation. Decisions on an investment in any oil or gas field development are made on the basis of its value, which is judged by a combination of a number of economic indicators. Economic Analysis of Oil and Gas Engineering Operations focuses on economic treatment of petroleum engineering operations and serves as a helpful resource for making practical and profitable decisions in oil and gas field development. Reflects major changes over the past decade or so in the oil and gas industry Provides thorough coverage of the use of economic analysis techniques in decision-making in petroleum-related projects Features real-world cases and applications of economic analysis of various engineering problems encountered in petroleum operations Includes principles applicable to other engineering disciplines This work will be of value to practicing engineers and industry professionals, managers, and executives working in the petroleum industry who have the responsibility of planning and decision-making, as well as advanced students in petroleum and chemical engineering studying engineering economics, petroleum economics and policy, project evaluation, and plant design.
Magnesium is one of the most abundant minerals in seawater. Extracting magnesium from seawater could reduce cost of this mineral, resulting in positive implications for industries that use it. This book addresses mineral process engineering with emphasis on magnesium and provides practicing engineers and students with comprehensive knowledge on magnesium and how it is extracted from seawater and magnesium ores. It takes a chemical engineering approach as separation of magnesium from seawater involves the application of the powerful science of chemistry and transport phenomena principles. This monograph discusses magnesium resources and occurrence, includes an exploration study on deriving magnesium and mineral salts from seawater, and features coverage of magnesium chloride. It also covers commercial methods for magnesium production as an end product, current and prospective applications in the energy domain, and offers an account of the use of magnesium to store hydrogen in the form of magnesium hydride.
This book presents the state of the art in biogas production using anaerobic digestion technology, with an emphasis on waste utilization/valorization. Offering a comprehensive reference guide to biogas production from different waste streams, it covers various aspects of anaerobic digestion technology from the basics, i.e., microbiological aspects to prominent parameters governing biogas production systems, as well as major principles of their operation, analysis, process control, and troubleshooting. Written and edited by internationally recognized experts in the field of biogas production from both academia and industry, it provides in-depth and cutting-edge information on central developments in the field. In addition, it discusses and reviews major issues affecting biogas production, including the type of feedstock, pretreatment techniques, production systems, design and fabrication of biogas plants, as well as biogas purification and upgrading technologies. ‘Biogas: Fundamentals, Process, and Operation’ also addresses the application of advanced environmental and energy evaluation tools including life cycle assessment (LCA), exergy, techno-economics, and modeling techniques. This book is intended for all researchers, practitioners and students who are interested in the current trends and future prospects of biogas production technologies.
The Institute of Food Technologists (IFT) recently endorsed the use of computers in food science education. The minimum standards for degrees in food science, as suggested by IFT,"require the students to use computers in the solution of problems, the collection and analysis of data, the control processes, in addition to word processing."Because they are widely used in business, allow statistical and graphical of experimental data, and can mimic laboratory experimentation, spreadsheets provide an ideal tool for learning the important features of computers and programming. In addition, they are ideally suited for food science students, who usually do not have an extensive mathematical background.Drawing from the many courses he has taught at UC Davis, Dr. Singh covers the general basics of spreadsheets using examples specific to food science. He includes more than 50 solved problems drawn from key areas of food science, namely food microbiology, food chemistry, sensory evaluation, statistical quality control, and food engineering. Each problem is presented with the required equations and detailed steps necessary for programming the spreadsheet. Helpful hints in using the spreadsheets are also provided throughout the text.Key Features* The first book to integrate speadsheets in teaching food science and technology* Includes more than 50 solved examples of spreadsheet use in food science and engineering* Presents a step-by-step introduction to spreadsheet use* Provides a food composition database on a computer disk
Phase Equilibria in Chemical Engineering is devoted to the thermodynamic basis and practical aspects of the calculation of equilibrium conditions of multiple phases that are pertinent to chemical engineering processes. Efforts have been made throughout the book to provide guidance to adequate theory and practice. The book begins with a long chapter on equations of state, since it is intimately bound up with the development of thermodynamics. Following material on basic thermodynamics and nonidealities in terms of fugacities and activities, individual chapters are devoted to equilibria primarily between pairs of phases. A few topics that do not fit into these categories and for which the state of the art is not yet developed quantitatively have been relegated to a separate chapter. The chapter on chemical equilibria is pertinent since many processes involve simultaneous chemical and phase equilibria. Also included are chapters on the evaluation of enthalpy and entropy changes of nonideal substances and mixtures, and on experimental methods. This book is intended as a reference and self-study as well as a textbook either for full courses in phase equilibria or as a supplement to related courses in the chemical engineering curriculum. Practicing engineers concerned with separation technology and process design also may find the book useful.
Today, C++ is gaining prominence as a programming language and is emerging as a preferred choice of programmers because of its many attractive features and its user-friendly nature. And this text, intended for undergraduate students of engineering as well as for students of Mathematics, Physics and Chemistry, shows how numerical methods can be applied in solving engineering problems using C++. The text, while emphasizing the application aspects, also provides deep insight into the development of numerical algorithms. KEY FEATURES • Gives detailed step-by-step description of numerical algorithms and demonstrates their implementation. Each method is illustrated with solved examples. • Provides C++ programs on many numerical algorithms. Elementary problems from various branches of science and engineering are solved. • Contains 79 programs written in C++. • Provides about 200 solved examples which illustrate the concepts. • The Exercise problems, with various categories like Quiz, Analytical and Numerical Problems and Software Development Projects, drill the students in self-study. • The accompanying CD-ROM contains all the programs given in the book. Students as well as programmers should find this text immensely useful for its numerous student-friendly features coupled with the elegant exposition of concepts and the clear emphasis on applications.
Applications of numerical mathematics and scientific computing to chemical engineering.