Download Free Chemical And Biogeochemical Processes At Methane And Other Cold Seeps Book in PDF and EPUB Free Download. You can read online Chemical And Biogeochemical Processes At Methane And Other Cold Seeps and write the review.

Methane is a strong climate-active gas, the concentration of which is rapidly increasing in the atmosphere. Vast methane reservoirs are hosted in seafloor sediments, both dissolved in pore fluids and trapped in gas hydrate. Cold seeps discharge significant amounts of this methane into the ocean. The rate of seabed methane discharge could be orders of magnitude higher than current estimates, creating considerable uncertainty. The extent of methane transfer from the seafloor to the water column and ultimately to the atmosphere is also uncertain. The seepage of methane and other hydrocarbons drives complex biogeochemical processes in marine sediments and the overlying water column. Seeps support chemosynthesis-based communities and impact the chemistry of the water column. Seeps may also play a critical role in ocean acidification and deoxygenation and can be geohazards, as well as a potential energy resource. Unraveling the complex and dynamic interactions and processes at marine seeps is crucial for our understanding of element cycling in the geo- and hydrosphere.
Marine sediments support complex interactions between macro-and microorganisms that have global implications for carbon and nutrient cycles. What is the state of the science on such interactions from coastal and estuarine environments to the deep sea? How does such knowledge effect environmental management? And what does future research hold in store for scientists, engineers, resource managers, and educators?Interactions between Macro- and Microorganisms in Marine Sediments responds to these questions, and more, by focusing on:? Interactions between plants, microorganisms, and marine sediment? Interactions between animals, microorganisms, and marine sediment? Interactions between macro- and microorganisms and the structuring of benthic communities? Impact of macrobenthic activity on microbially-mediated geochemical cycles in sediments? Conceptual and numeric models of diagenesis that incorporate interactions between macro- and microorganismsHere is an authoritative overview of the research, experimentation and modeling approaches now in use in our rapidly evolving understanding of life in marine sediments.
Seafloor fluid and gas emission has been revealed to be a geographically widespread phenomenon in recent years as researchers have discovered new off-axis hydrothermal vent fields and previously unmapped shallow (deltaic, continental shelf) and deep water cold seeps. Seafloor seep emissions play a critical role in global biogeochemical cycles, but also contribute to the development of economically important mineral deposits that are increasingly targeted for exploitation. Hydrothermal vents and cold seeps host unique microbiological and macrofaunal communities that provide clues to life on primordial Earth, and seafloor fluid and gas emissions play a complex role in microbial dispersal, ocean chemistry, plankton dynamics, and possibly global climate. This Research Topic will address the knowledge gaps about the linked chemistry, macro/microbiology, physics, and geology of seafloor emissions and explore both the economic potential and conservation efforts associated with hydrothermal vents and cold seeps.
Systems Biogeochemistry of Major Marine Biomes A comprehensive system-level discussion of the geomicrobiology of the Earth’s oceans In Systems Biogeochemistry of Major Marine Biomes, a team of distinguished researchers delivers a systemic overview of biogeochemistry across a number of major physiographies of the global ocean: the waters and sediments overlying continental margins; the deep sub-surfaces; the Arctic and Antarctic oceans; and the physicochemical extremes such as the hypersaline and sulfidic marine zones, cold methane seeps and hydrothermal ecosystems. The book explores state-of-the-art advances in marine geomicrobiology and investigates the drivers of biogeochemical processes. It highlights the imperatives of the unique, fringe, and cryptic processes while studying the geological manifestations and ecological feedbacks of in situ microbial metabolisms. Taking a holistic approach toward the understanding of marine biogeochemical provinces, this book emphasizes the centrality of culture-dependent and culture-independent (meta-omics-based) microbiological information within a systems biogeochemistry framework. Perfect for researchers and scientists in the fields of geochemistry, geophysics, geomicrobiology, oceanography, and marine science, Systems Biogeochemistry of Major Marine Biomes will also earn a place in the libraries of policymakers and advanced graduate students seeking a one-stop reference on marine biogeochemistry.
Globally growing demand of energy and mineral resources, reliable future projection of climate processes and the protection of coasts to mitigate the threats of disasters and hazards require a comprehensive understanding of the structure, ongoing processes and genesis of the marine geosphere. Beyond the “classical” research fields in marine geology in current time more general concepts have been evolved integrating marine geophysics, hydrography, marine biology, climatology and ecology. As an umbrella the term “marine geosciences” has been broadly accepted for this new complex field of research and the solutions of practical tasks in the marine realm. The “Encyclopedia of Marine Geosciences” comprises the current knowledge in marine geosciences whereby not only basic but also applied and technical sciences are covered. Through this concept a broad scale of users in the field of marine sciences and techniques is addressed from students and scholars in academia to engineers and decision makers in industry and politics.
This book is open access under a CC BY-NC 2.5 license. The Gulf of Mexico is an open and dynamic marine ecosystem rich in natural resources but heavily impacted by human activities, including agricultural, industrial, commercial and coastal development. The Gulf of Mexico has been continuously exposed to petroleum hydrocarbons for millions of years from natural oil and gas seeps on the sea floor, and more recently from oil drilling and production activities located in the water near and far from shore. Major accidental oil spills in the Gulf are infrequent; two of the most significant include the Ixtoc I blowout in the Bay of Campeche in 1979 and the Deepwater Horizon Oil Spill in 2010. Unfortunately, baseline assessments of the status of habitats and biota in the Gulf of Mexico before these spills either were not available, or the data had not been systematically compiled in a way that would help scientists assess the potential short-term and long-term effects of such events. This 2-volume series compiles and summarizes thousands of data sets showing the status of habitats and biota in the Gulf of Mexico before the Deepwater Horizon Oil Spill. Volume 1 covers: water and sediment quality and contaminants in the Gulf; natural oil and gas seeps in the Gulf of Mexico; coastal habitats, including flora and fauna and coastal geology; offshore benthos and plankton, with an analysis of current knowledge on energy capture and energy flows in the Gulf; and shellfish and finfish resources that provide the basis for commercial and recreational fisheries.
Marine systems vary in their sensitivities to perturbation. Perturbation may be insidious - such as increasing eutrophication of coastal areas - or it may be dramatic - such as a response to an oil spill or some other accident. Climate change may occur incrementally or it may be abrupt, and ecosystem resilience is likely to be a complex function of the interactions of the factors and species mediating key biogeochemical processes. Biogeochemistry of Marine Systems considers issues of marine system resilience, focusing on a range of marine systems that exemplify major global province types. Each system is interesting in its own right, on account of its sensitivity to natural or anthropogenic change or its importance as an ecological service provider. Each contributing author concentrates on advances of the last decade. This prime reference source for marine biogeochemists, marine ecologists, and global systems scientists provides a strong foundation for the study of the multiple marine systems undergoing change because of natural biochemical or anthropogenic factors.
This Encyclopedia of Agrophysics will provide up-to-date information on the physical properties and processes affecting the quality of the environment and plant production. It will be a "first-up" volume which will nicely complement the recently published Encyclopedia of Soil Science, (November 2007) which was published in the same series. In a single authoritative volume a collection of about 250 informative articles and ca 400 glossary terms covering all aspects of agrophysics will be presented. The authors will be renowned specialists in various aspects in agrophysics from a wide variety of countries. Agrophysics is important both for research and practical use not only in agriculture, but also in areas like environmental science, land reclamation, food processing etc. Agrophysics is a relatively new interdisciplinary field closely related to Agrochemistry, Agrobiology, Agroclimatology and Agroecology. Nowadays it has been fully accepted as an agricultural and environmental discipline. As such this Encyclopedia volume will be an indispensable working tool for scientists and practitioners from different disciplines, like agriculture, soil science, geosciences, environmental science, geography, and engineering.
Gas hydrates in their natural environment and for potential industrial applications (Volume 2).