Download Free Charging Infrastructure Requirements To Increase Demand For Electric Vehicles In Germany E Mobility Market Development Book in PDF and EPUB Free Download. You can read online Charging Infrastructure Requirements To Increase Demand For Electric Vehicles In Germany E Mobility Market Development and write the review.

Academic Paper from the year 2021 in the subject Economy - Environment economics, grade: 1,3, The FOM University of Applied Sciences, Hamburg, language: English, abstract: The objective of this assignment is to research charging infrastructure requirements, that potentially increase the demand for electric vehicles. The scope of this work will be limited to the German market, except for the overview of the e-Mobility market development. To examine the objective a secondary research of current literature, statistical reports, media and regulations will be performed. First of all, the author will present theoretical foundations to better understand the subsequent chapters, following by an overview of the global e-Mobility market development. Hereafter, the components of charging infrastructure are examined and the current challenges regarding market penetration, following an in-depth research of the charging infrastructure requirements to increase the demand for electric vehicles. Finally, the author will summarize her conclusion and outlook. Climate change, new technologies and less dependence on fossil fuels are major drivers for the development of electric mobility. Electric mobility produces much less CO2, especially when operated using renewable based electricity and therefore seen as key element of the energy transition towards a CO2 neutral environment. In addition, the batteries of electric vehicles (EV) can be used as energy storage to offset fluctuations in solar and wind power. Thus, electric vehicles foster the market integration and expansion of these volatile energy sources. To support and promote research and development of electric vehicles the Federal Government has adopted a set of measures, e.g., the extension of charging infrastructure. The German Government set ambitious goals for the German charging infrastructure. In order to reach this goal, customers must be convinced that an EV is better than the conventional motor type cars. Slowly, but electric vehicles become more visible nowadays. The major current challenges still pose the range of batteries and the charging management. Through digitalization of traffic systems and the increasing automation of mobility in form of autonomous driving cars, the change will be further accelerated.
This book tackles the problem of the insufficient and expensive charging infrastructure in Germany. It assesses the lack of charging infrastructure for electric vehicles with regard to regulatory and competition law, as well as economic aspects. The legal solutions proposed here could ultimately serve to offer e-motorists around the country highly efficient and competitively priced charging options.
Focusing on technical, policy and social/societal practices and innovations for electrified transport for personal, public and freight purposes, this book provides a state-of-the-art overview of developments in e-mobility in Europe and the West Coast of the USA. It serves as a learning base for further implementing and commercially developing this field for the benefit of society, the environment and public health, as well as for economic development and private industry. A fast-growing, interdisciplinary sector, electric mobility links engineering, infrastructure, environment, transport and sustainable development. But despite the relevance of the topic, few publications have ever attempted to document or promote the wide range of electric mobility initiatives and projects taking place today. Addressing this need, this publication consists of case studies, reports on technological developments and examples of successful infrastructure installation in cities, which document current initiatives and serve as an inspiration for others.
Planning the charging infrastructure for electric vehicles (EVs) is a new challenging task. This book treats all involved aspects: charging technologies and norms, interactions with the electricity system, electrical installation, demand for charging infrastructure, economics of public infrastructure provision, policies in Germany and the EU, external effects, stakeholder cooperation, spatial planning on the regional and street level, operation and maintenance, and long term spatial planning.
The UN Climate Change Conference in Paris, with its key topics of global warming and deteriorating air quality, will speed up the advance of electric mobility. CO2-neutral and zero-emission mobility require electricity to be generated from regenerative sources of energy. Power generation from wind and solar energy, however is dependent on the weather and is therefore not stable. The irregularities that occur in nature can result in unacceptable voltage fluctuations in the power grid. For that reason, the availability of highly flexible loads and storage systems is becoming particularly important. Electric vehicles, with their grid-relevant properties as controllable power consumers and electricity storage systems, could help to stabilize future power grids.
The transport sector, which is currently almost completely based on fossil fuels, is one of the major contributors to greenhouse gas emissions. Heading towards a more sustainable development of mobility could be possible with more energy efficient automotive technologies such as battery electric vehicles. The number of electric vehicles has been increasing over the last decade, but there are still many challenges that have to be solved in the future. This Special Issue “Prospects for Electric Mobility: Systemic, Economic and Environmental Issues” contributes to the better understanding of the current situation as well as the future prospects and impediments for electro mobility. The published papers range from historical development of electricity use in different transport modes and the recent challenges up to future perspectives.
The Handbook of Choice Modelling, composed of contributions from senior figures in the field, summarizes the essential analytical techniques and discusses the key current research issues. The book opens with Nobel Laureate Daniel McFadden calling for d
This edited open access book gives a comprehensive overview of small and lightweight electric three- and four-wheel vehicles with an international scope. The present status of small electric vehicle (SEV) technologies, the market situation and main hindering factors for market success as well as options to attain a higher market share including new mobility concepts are highlighted. An increased usage of SEVs can have different impacts which are highlighted in the book in regard to sustainable transport, congestion, electric grid and transport-related potentials. To underline the effects these vehicles can have in urban areas or rural areas, several case studies are presented covering outcomes of pilot projects and studies in Europe. A study of the operation and usage in the Global South extends the scope to a global scale. Furthermore, several concept studies and vehicle concepts on the market give a more detailed overview and show the deployment in different applications.
This book covers alternative fuels and their utilization strategies in internal combustion engines. The main objective of this book is to provide a comprehensive overview of the recent advances in the production and utilization aspects of different types of liquid and gaseous alternative fuels. In the last few years, methanol and DME have gained significant attention of the energy sector, because of their capability to be utilized in different types of engines. This book will be a valuable resource for researchers and practicing engineers alike.
For a century, almost all light-duty vehicles (LDVs) have been powered by internal combustion engines operating on petroleum fuels. Energy security concerns about petroleum imports and the effect of greenhouse gas (GHG) emissions on global climate are driving interest in alternatives. Transitions to Alternative Vehicles and Fuels assesses the potential for reducing petroleum consumption and GHG emissions by 80 percent across the U.S. LDV fleet by 2050, relative to 2005. This report examines the current capability and estimated future performance and costs for each vehicle type and non-petroleum-based fuel technology as options that could significantly contribute to these goals. By analyzing scenarios that combine various fuel and vehicle pathways, the report also identifies barriers to implementation of these technologies and suggests policies to achieve the desired reductions. Several scenarios are promising, but strong, and effective policies such as research and development, subsidies, energy taxes, or regulations will be necessary to overcome barriers, such as cost and consumer choice.