Download Free Characterizing The Climate Impacts Of Brown Carbon Book in PDF and EPUB Free Download. You can read online Characterizing The Climate Impacts Of Brown Carbon and write the review.

Cambridge, UK : Cambridge University Press, 1998.
Atmospheric aerosols directly affect the Earth's radiative budget by absorbing and scattering solar radiation. Carbonaceous aerosols constitute 20-90% of the global aerosol mass burden and are recognized by the Intergovernmental Panel on Climate Change as important drivers of direct radiative forcing (DRF). Aerosol radiative impacts have been implicated in regional atmospheric warming in South Asia: changing Indian monsoon patterns, and accelerating melting of the Himalayan glaciers. There are systematic global discrepancies between estimates of aerosol absorption optical depths derived from observations and those from climate models. Over South Asia, models predict six times lower aerosol absorption than ground-based observations, leading to a low bias in modeled DRF. To resolve this bias, there is a need to (1) account for relevant emission source types, and associated emission rates, and (2) constrain aerosol optical properties: mass absorption cross-sections (MAC), single scattering albedo (SSA) and scattering directionality parameters (asymmetry parameter or upscatter fraction). To that end, two broad classes of light absorbing carbonaceous aerosols need to be separately dealt with: black carbon (BC) and brown carbon (BrC).BC is known to strongly absorb visible solar radiation and its optical properties have been characterized using both direct measurements and optical models. BC aerosols exhibit aggregate morphologies, with fractal dimensions of 1.8 and 2.6 for fresh and aged particles, respectively. As a simplification, current climate models usually approximate BC aerosols as volume-equivalent spheres and use analytical solutions (known as the Lorenz-Mie theory) of Maxwell's equations for estimating their optical properties. Recent modeling studies employed the numerically-exact superposition transition-matrix method to compute optical cross-sections of fractal aggregates of varying sizes and fractal dimensions. These studies highlight the effect of morphology on BC optical behavior soot but their findings (expressed in terms of fractal properties) cannot be used directly by aerosol experimentalists and climate modelers. Exploiting the theoretical bases of aerosol sizing techniques, I determined empirical relationships between numerically-exact optical properties of fractal BC particles and their equivalent diameters, that can be measured by common aerosol instrumentation. In a related study, I reported improved relationships between scattering directionality parameters of BC aggregates, and compared them with the canonical equations which did not allow for treatment of particle morphology.The second branch of my thesis is concerned with light absorbing organic carbon (OC). OC is conventionally modeled as purely light scattering in radiative transfer calculations. However, this approach has been challenged by mounting observational evidence of a class of OC aerosols exhibiting strong absorption in the near ultra-violet wavelengths and little to no absorption in the near-infrared region. This wavelength dependence of absorption leads to a brownish appearance, hence the name brown carbon. Absorption properties of BrC depend on fuel properties and combustion phase (flaming/smoldering): their observed values are source-specific, spanning an order of magnitude in literature. The focus of this part of my research is on the largest source of OC emissions in South Asia: household biomass cookstoves. I conducted a field study in a household in central India in December 2015 and developed a dataset of emission rates for commonly used biomass fuels from various regions of India, which showed that (1) laboratory cookstove tests underestimated particulate mass emission factors by 2-4 times and (2) cookstove aerosol emissions were dominated by thermally stable OC, which is linked with stronger light absorption than volatile OC.To constrain the MAC values for cookstove OC emissions, I performed optical (transmission and reflection) measurements on filter samples of aerosols collected during the field study. Filter optical measurements are associated with artifacts arising from the interaction of the filter medium with light. Through a laboratory study of a wide variety of combustion aerosols, I developed correction schemes for estimating aerosol-phase light absorption from filter-based measurements. This aided the estimation of absorption characteristics of cookstove particulate emissions and their OC components. We found that light absorbing OC contributes roughly as much as BC to total absorption cross-sections of cookstove emissions at 550 nm wavelength, enhancing their direct forcing efficiency. We proposed values for key absorption characteristics of cookstove OC emissions for use within climate impact assessment and mitigation efforts.
As governments and institutions work to ameliorate the effects of anthropogenic CO2 emissions on global climate, there is an increasing need to understand how land-use and land-cover change is coupled to the carbon cycle, and how land management can be used to mitigate their effects. This book brings an interdisciplinary team of fifty-eight international researchers to share their novel approaches, concepts, theories and knowledge on land use and the carbon cycle. It discusses contemporary theories and approaches combined with state-of-the-art technologies. The central theme is that land use and land management are tightly integrated with the carbon cycle and it is necessary to study these processes as a single natural-human system to improve carbon accounting and mitigate climate change. The book is an invaluable resource for advanced students, researchers, land-use planners and policy makers in natural resources, geography, forestry, agricultural science, ecology, atmospheric science and environmental economics.
Urban aerosols have been identified as important species of concern due to their potential health and environmental impacts. This symposium series book will describe the basic chemistry and physics determining the impacts of aerosol species and will highlight the research results from the measurements that were taken following the collapse of the World Trade Center (WTC) on 9/11/01. The WTC tragedy led to the release of millions of pounds of debris aside from the structural steel, part of which was widely dissipated as aerosols and particulates in the debris cloud over lower Manhattan. Additionally, continuing fires under the debris led to the release of fine combustion related aerosols for a considerable time period in this urban environment. Held during the week of the second anniversary of the WTC tragedy in NYC, the symposium book will describe various aspects of the event, aerosol and gas exposures, and the related impacts of these aerosols. The book contributions will highlight efforts work from atmospheric chemists, meteorologists, health workers, and biologists for a timely compilation of what is known and not known about the composition and transport of tropospheric aerosols in urban environs, particularly those from the WTC collapse. Particular interest is in the acute and chronic environmental effects of these aerosols as they impact human health. Chapters included in the book will also address aerosol lifetimes, aerosol transport and removal processes, acute and chronic health effects to fine aerosol and particulate exposures, and the environmental impacts of aerosols.
The report also provides a comprehensive assessment of past and future sea level change in a dedicated chapter.
We live on a dynamic Earth shaped by both natural processes and the impacts of humans on their environment. It is in our collective interest to observe and understand our planet, and to predict future behavior to the extent possible, in order to effectively manage resources, successfully respond to threats from natural and human-induced environmental change, and capitalize on the opportunities â€" social, economic, security, and more â€" that such knowledge can bring. By continuously monitoring and exploring Earth, developing a deep understanding of its evolving behavior, and characterizing the processes that shape and reshape the environment in which we live, we not only advance knowledge and basic discovery about our planet, but we further develop the foundation upon which benefits to society are built. Thriving on Our Changing Planet presents prioritized science, applications, and observations, along with related strategic and programmatic guidance, to support the U.S. civil space Earth observation program over the coming decade.