Download Free Characterizing Stellar And Exoplanetary Environments Book in PDF and EPUB Free Download. You can read online Characterizing Stellar And Exoplanetary Environments and write the review.

In this book an international group of specialists discusses studies of exoplanets subjected to extreme stellar radiation and plasma conditions. It is shown that such studies will help us to understand how terrestrial planets and their atmospheres, including the early Venus, Earth and Mars, evolved during the host star’s active early phase. The book presents an analysis of findings from Hubble Space Telescope observations of transiting exoplanets, as well as applications of advanced numerical models for characterizing the upper atmosphere structure and stellar environments of exoplanets. The authors also address detections of atoms and molecules in the atmosphere of “hot Jupiters” by NASA’s Spitzer telescope. The observational and theoretical investigations and discoveries presented are both timely and important in the context of the next generation of space telescopes. The book is divided into four main parts, grouping chapters on exoplanet host star radiation and plasma environments, exoplanet upper atmosphere and environment observations, exoplanet and stellar magnetospheres, and exoplanet observation and characterization. The book closes with an outlook on the future of this research field.
The past decade has delivered remarkable discoveries in the study of exoplanets. Hand-in-hand with these advances, a theoretical understanding of the myriad of processes that dictate the formation and evolution of planets has matured, spurred on by the avalanche of unexpected discoveries. Appreciation of the factors that make a planet hospitable to life has grown in sophistication, as has understanding of the context for biosignatures, the remotely detectable aspects of a planet's atmosphere or surface that reveal the presence of life. Exoplanet Science Strategy highlights strategic priorities for large, coordinated efforts that will support the scientific goals of the broad exoplanet science community. This report outlines a strategic plan that will answer lingering questions through a combination of large, ambitious community-supported efforts and support for diverse, creative, community-driven investigator research.
Are we alone in the universe? How did life arise on our planet? How do we search for life beyond Earth? These profound questions excite and intrigue broad cross sections of science and society. Answering these questions is the province of the emerging, strongly interdisciplinary field of astrobiology. Life is inextricably tied to the formation, chemistry, and evolution of its host world, and multidisciplinary studies of solar system worlds can provide key insights into processes that govern planetary habitability, informing the search for life in our solar system and beyond. Planetary Astrobiology brings together current knowledge across astronomy, biology, geology, physics, chemistry, and related fields, and considers the synergies between studies of solar systems and exoplanets to identify the path needed to advance the exploration of these profound questions. Planetary Astrobiology represents the combined efforts of more than seventy-five international experts consolidated into twenty chapters and provides an accessible, interdisciplinary gateway for new students and seasoned researchers who wish to learn more about this expanding field. Readers are brought to the frontiers of knowledge in astrobiology via results from the exploration of our own solar system and exoplanetary systems. The overarching goal of Planetary Astrobiology is to enhance and broaden the development of an interdisciplinary approach across the astrobiology, planetary science, and exoplanet communities, enabling a new era of comparative planetology that encompasses conditions and processes for the emergence, evolution, and detection of life.
Ultraviolet Astronomy and the Quest for the Origin of Life addresses the use of astronomical observations in the ultraviolet range to better understand the generation of complex, life-precursor molecules. The origin of RNA is still under debate but seems to be related to the generation of pools of complex organic molecules submitted to heavy cycles of solution in water and drying. This book investigates whether these cycles require a planetary surface or may occur in space by examining both the theoretical and observational aspects of the role of UV radiation in the origin of life. This book offers the latest advances in these studies for astronomers, astrobiologists and planetary scientists. - Addresses both the theoretical and observational aspects of the role of Ultraviolet (UV) radiation in the origin of life - Builds on the requirements to produce prebiotic molecules in space and the implications for the origin of RNA - Investigates the use of ultraviolet observations related to planetary system formation, the evolution of young planetary disks, and the interaction of stars with planetary atmospheres
Review of Volume 4:'The Handbook can be a good reference for a higher-degree science student approaching the subject or for an expert in a similar field in astronomical instrumentation. The reader requiring an in-depth presentation of a specific topic will be guided by the rich reference lists included at the end of each chapter.'The ObservatoryOur goal is to produce a comprehensive handbook of the current state of the art of astronomical instrumentation with a forward view encompassing the next decade. The target audience is graduate students with an interest in astronomical instrumentation, as well as practitioners interested in learning about the state of the art in another wavelength band or field closely related to the one in which they currently work. We assume a working knowledge of the fundamental theory: optics, semiconductor physics, etc. The purpose of this handbook is to bring together some of the leading experts in the world to discuss the frontier of astronomical instrumentation across the electromagnetic spectrum and extending into multimessenger astronomy.
Like planets in our solar system, exoplanets form, evolve, and interact with their host stars in many ways. As exoplanets acquire material and grow to the final size, their atmospheres are subjected to intense UV and X-radiation and high-energy particle bombardment from the young host star. Whether a planet can retain its atmosphere and the conditions for significant mass loss both depend upon the strength of the host star's high-energy radiation and wind, the distance of the exoplanet from its host star, the gravitational potential of the exoplanet, and the initial chemical composition of the exoplanet atmosphere. This introductory overview describes the physical processes responsible for the emission of radiation and acceleration of winds of host stars that together control the environment of an exoplanet, focusing on topics that are critically important for understanding exoplanetary atmospheres but are usually not posed from the perspective of host stars. Accordingly, both host stars and exoplanets are not studied in isolation but are treated as integrated systems. Stellar magnetic fields, which are the energy source for activity phenomena including high-energy radiation and winds, play a critical role in determining whether exoplanets are habitable. This text is primarily for researchers and graduate students who are studying exoplanet atmospheres and habitability, but who may not have a background in the physics and phenomenology of host stars that provide the environment in which exoplanets evolve. It provides a comprehensive overview of this broad topic rather than going deeply into many technical aspects but includes a large list of references to guide those interested in pursuing these questions. Nonspecialists with a scientific background should also find this text a valuable resource for understanding the critical issues of contemporary exoplanet research.
An essential introduction to the theory of exoplanetary atmospheres The study of exoplanetary atmospheres—that is, of planets orbiting stars beyond our solar system—may be our best hope for discovering life elsewhere in the universe. This dynamic, interdisciplinary field requires practitioners to apply knowledge from atmospheric and climate science, astronomy and astrophysics, chemistry, geology and geophysics, planetary science, and even biology. Exoplanetary Atmospheres provides an essential introduction to the theoretical foundations of this cutting-edge new science. Exoplanetary Atmospheres covers the physics of radiation, fluid dynamics, atmospheric chemistry, and atmospheric escape. It draws on simple analytical models to aid learning, and features a wealth of problem sets, some of which are open-ended. This authoritative and accessible graduate textbook uses a coherent and self-consistent set of notation and definitions throughout, and also includes appendixes containing useful formulae in thermodynamics and vector calculus as well as selected Python scripts. Exoplanetary Atmospheres prepares PhD students for research careers in the field, and is ideal for self-study as well as for use in a course setting. The first graduate textbook on the theory of exoplanetary atmospheres Unifies knowledge from atmospheric and climate science, astronomy and astrophysics, chemistry, planetary science, and more Covers radiative transfer, fluid dynamics, atmospheric chemistry, and atmospheric escape Provides simple analytical models and a wealth of problem sets Includes appendixes on thermodynamics, vector calculus, tabulated Gibbs free energies, and Python scripts Solutions manual (available only to professors)
Planetary Exploration Horizon 2061: A Long-Term Perspective for Planetary Exploration synthesizes all the material elaborated and discussed during three workshops devoted to the Horizon 2061 foresight exercise. Sections cover the science of planetary systems, space missions to solar system objects, technologies for exploration, and infrastructures and services to support the missions and to maximize their science return. The editors follow the path of the implementation of a planetary mission, from the needed support in terms of navigation and communication, through the handling of samples returned to Earth, to the development of more permanent infrastructures for scientific human outposts on the Moon and Mars. This book also includes a special chapter entirely devoted to contributions from students and early-career scientists: the "Horizon 2061 generation and a final chapter on important avenues for the actual implementation of the planetary missions coming out of our "Dreams for Horizon 2061: International cooperation, and the growing role and initiatives of private enterprise in planetary exploration. - Provides a logical link between scientific questions and the technologies needed to thoroughly address them - Organized chapters present a logical road map of subjects, while also stimulating a cross-disciplinary understanding of the scientific and technical challenges of planetary exploration - Contains illustrations and tables that capture and synthesize knowledge of a broad readership
Summarising the striking advances of the last two decades, this reliable introduction to modern astronomical polarimetry provides a comprehensive review of state-of-the-art techniques, models and research methods. Focusing on optical and near-infrared wavelengths, each detailed, up-to-date chapter addresses a different facet of recent innovations, including new instrumentation, techniques and theories; new methods based on laboratory studies, enabling the modelling of polarimetric characteristics for a wide variety of astronomical objects; emerging fields of polarimetric exploration, including proto-planetary and debris discs, icy satellites, transneptunian objects, exoplanets, and the search for extraterrestrial life; and unique results produced by space telescopes, and polarimeters aboard exploratory spacecraft. With contributions from an international team of accomplished researchers, this is an ideal resource for astronomers and researchers working in astrophysics, earth sciences, and remote sensing keen to learn more about this valuable diagnostic tool. The book is dedicated to the memory of renowned polarimetrist Tom Gehrels.