Download Free Characterizing Ambient Organic Aerosol Properties Sources And Processes Via Aerosol Mass Spectrometry Book in PDF and EPUB Free Download. You can read online Characterizing Ambient Organic Aerosol Properties Sources And Processes Via Aerosol Mass Spectrometry and write the review.

Organic aerosol (OA) is an important component of the earth’s climate system, making up a substantial fraction of the fine aerosol mass in the atmosphere. However, the atmospheric evolution of OA after emission remains poorly characterized. A better understanding of its life cycle is critical for environmental issues ranging from air quality to climate change. In this dissertation, real-time measurements of submicron aerosols were made using a High-Resolution Time-of-Flight Aerosol Mass Spectrometers (AMS) during two DOE field campaigns to obtain a detailed understanding of the chemical and physical properties, sources and atmospheric processes of OA under various emission regimes. The first field study took place at a rural forest site on Long Island, NY, as part of the Aerosol Life Cycle Intensive Operation Period at Brookhaven National Lab (ALC-IOP at BNL). OA was found to dominate the submicron aerosol mass at BNL and was overwhelmingly secondary. Urban emissions transported from the New York metropolitan area led to elevated OA mass concentration and altered OA composition and physical-chemical properties at this rural site. Results suggest that mixed anthropogenic emissions and biogenic emission led to enhance secondary OA (SOA) production. The second field study took place at a high-altitude regional background site, Mt. Bachelor Observatory (MBO; ~ 2763 m a.s.l), in the western US as part of the Biomass Burning Observation Project (BBOP). Regional and free tropospheric (FT) aerosols under clean conditions were characterized. Significant compositional and physical differences between FT and boundary layer (BL) OA were observed. Free tropospheric OA was highly oxidized with low volatility, whereas OA associated with BL air masses was less oxidized and appeared to be semivolatile. For periods influenced by transported wildfires plumes during the study period, aerosol concentration at MBO increased substantially and was overwhelmingly organic. Three types of BB organic aerosol (BBOA) were identified and appeared to have been subjected to different degrees of atmospheric processing. A case study using consecutive BB plumes transported from the same fire source showed that photochemical aging led to more oxidized OA with higher mass fractions of aged BBOA and a lower fraction of fresh BBOA. Although BBOA in daytime plumes were chemically more processed than nighttime plumes, the enhancement ratios of OA relative to CO were very similar. Based on observations both at MBO and near fire sources using the DOE G-1 aircraft, BBOA concentrations and chemical properties were strongly influenced by combustion processes at the source. However, OA emissions were consistent between fresher emissions and emissions sampled after atmospheric transport. In addition, tighter correlations were observed between OA oxidation degree and plume age. These results suggest that aging leads to substantial chemical transformed and more oxidized BBOA in this study, yet BBOA concentration was conserved to a significant extent during regional transport, for which a possible reason is that SOA formation was almost entirely balanced by BBOA volatilization.
Atmospheric aerosols are known to have multifaceted effects on human health, visibility and climate. To understand these effects, characterization of aerosol properties is necessary. This dissertation focuses on several specific topics with the overall goal of improving our understanding of aerosols in the atmosphere. One area of importance is particulate organic nitrates, which are known to be ubiquitous in the atmosphere; however, there is a lack of proven analytical techniques for their measurement. The qualitative and quantitative response of a high resolution time of flight aerosol mass spectrometer to particulate organic nitrates was studied by analyzing secondary organic aerosol (SOA) from NO3 radical reactions with [Alpha]- and [Beta]-pinene, 3-carene, limonene, and isoprene. Extensive fragmentation of the organic nitrate products was observed in the mass spectra, which precluded molecular speciation. Another area of interest is the recent development of a number of ambient ionization techniques, which are promising for aerosol characterization. One such technique, atmospheric solids analysis probe mass spectrometry (ASAP-MS), was applied for the first time to the identification of organics in SOA, which was generated in the laboratory from the ozonolysis of & alpha;-pinene and isoprene, and from the NO3 oxidation of & alpha;-pinene. Also, ambient samples were collected from a forested and a suburban location. ASAP-MS data for the laboratory-generated samples showed peaks corresponding to well-known products of these reactions, and higher molecular weight oligomers were present in all samples. This is consistent with previously published studies of similar systems and shows that ASAP-MS should have wide applicability in both laboratory and field studies. Vapor pressures of low volatility compounds are important parameters in several atmospheric processes, including the formation of new particles and the partitioning of compounds between the gas-phase and particles. However, vapor pressures of low volatility compounds are challenging to measure and reported values vary significantly, illustrating the need for new approaches. ASAP-MS was applied for the first time to the measurement of vapor pressures and heats of sublimation. The measured heats of sublimation were in good agreement with published values. The vapor pressures were typically within a factor of three of published values made at similar temperatures. This study establishes that ASAP-MS is a promising new technique for vapor pressure and heat of sublimation measurements of low volatility compounds. To further understand new particle formation, laboratory and field measurements were made to identify gas-phase amines, which could play a role in new particle formation, from previously unknown sources using proton transfer reaction mass spectrometry. The work presented in this dissertation advances our understanding of aerosols and explores novel methods for their characterization.
Organic aerosol is a major constituent of atmospheric fine particles, especially over continental regions. These particles adversely affect human health and global climate. A significant fraction of organic aerosol is considered to be from the oxidation products of ozone and volatile organic compounds, which are called secondary organic aerosol (SOA). To study the formation mechanisms of secondary organic aerosol, it is important to characterize their molecular composition. The composition of secondary organic aerosol is very complex including thousands of species with molecular weight up to over a thousand Dalton. Methods utilized for the identification of these oxidation products involve advanced mass spectrometry techniques. In this dissertation, three mass spectrometry techniques were developed to study the molecular composition of organic aerosol. Firstly, online nano-aerosol sample deposition methods for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry was developed to incorporate matrix particles directly with analyte particles onto a conventional MALDI plate. Secondly, a microsampling and analysis technique was developed in order to collect microgram samples and analyze them with high performance mass spectrometry. With this technique, the molecular composition of particle phase SOA at a low mass loading can be elucidated, which provides information about SOA formation at the early stages. A species with the (neutral molecule) formula C 17 H 26 O 8 (MW 358) increased substantially in intensity relative to other products as the mass loading decreased. Tandem mass spectrometry (MS n) of this species showed it to be a dimer of C 9 H 14 O 4 and C 8 H 12 O 4, most likely pinic acid and terpenylic acid, respectively. This species is likely to be critical at the early stages of SOA formation. Thirdly, ambient secondary electrospray ionization (ESI) source was designed to characterize the molecular composition of both gas and particle phases SOA online. This ion source was demonstrated to be applicable to a wide range of mass spectrometers having an ambient inlet. This technique provides a tool to acquire detailed information about possible SOA nucleation agents. A species with the (neutral molecule) formula C 20 H 36 O 6 (MW 372) was found in the gas-phase products of SOA, which could be critical for the new particle formation of SOA. Tandem mass spectrometry (MS n) of this species showed it to be a dimer of an organic hydroperoxide C 10 H 18 O 3, which is likely formed via OH-initiated oxidation pathway.
This thesis characterizes properties of ambient secondary organic aerosol (SOA), an important and abundant component of particulate matter. The findings presented in this thesis are significant because they represent the results from ambient measurements, which are relatively scarce, and because they report on properties of SOA that, until now, were highly uncertain. The analyses utilized the fraction of particulate organic carbon that was soluble in water (WSOCp) to approximate SOA concentrations in two largely different urban environments, Mexico City and Atlanta. In Mexico City, measurements of atmospheric gases and fine particle chemistry were made at a site ~ 30 km down wind of the city center. Using box model analyses and a comparison to ammonium nitrate aerosol, a species whose thermodynamic properties are generally understood, the morning formation and mid-day evaporation of SOA are investigated. In Atlanta, simultaneous measurements of WSOCp and water-soluble organic carbon in the gas phase (WSOCg) were carried out for an entire summer to investigate the sources and partitioning of WSOC. The results suggest that both WSOCp and WSOCg were secondary and biogenic, except possibly in several strong biomass burning events. The gas/particle partitioning of WSOC in Atlanta was investigated through the parameter, Fp, which represented the fraction of WSOC in the particle phase. Factors that appear to influence WSOC partitioning in Atlanta include ambient relative humidity and the WSOCp mass concentration. There was also a relationship between the NOx concentration and Fp, though this was not likely related to the partitioning process. Temperature did not appear to impact Fp, though this may have been due to positive relationships WSOCp and WSOCg each exhibited with temperature. Neither the total Organic Carbon aerosol mass concentration nor the ozone concentration impacted WSOC partitioning.
Particulate Matter Science for Policy Makers: A NARSTO Assessment was commissioned by NARSTO, a cooperative public-private sector organization of Canada, Mexico and the United States. It is a concise and comprehensive discussion of the current understanding by atmospheric scientists of airborne particulate matter (PM). Its goal is to provide policy makers who implement air-quality standards with this relevant and needed scientific information. The primary audience for this volume will be regulators, scientists, and members of industry, all of whom have a stake in effective PM management. It will also inform exposure and health scientists, who investigate causal hypotheses of health impacts, characterize exposure, and conduct epidemiological and toxicological studies.
Particles in the atmosphere are known to have negative health effects and important but highly uncertain impacts on global and regional climate. A majority of this particulate matter is formed through atmospheric oxidation of naturally and anthropogenically emitted gases to yield highly oxygenated secondary organic aerosol (SOA), an amalgamation of thousands of individual chemical compounds. However, comprehensive analysis of SOA composition has been stymied by its complexity and lack of available measurement techniques. In this work, novel instrumentation, analysis methods, and conceptual frameworks are introduced for chemically characterizing atmospherically relevant mixtures and ambient aerosols, providing a fundamentally new level of detailed knowledge on their structures, chemical properties, and identification of their components. This chemical information is used to gain insights into the formation, transformation and oxidation of organic aerosols. Biogenic and anthropogenic mixtures are observed in this work to yield incredible complexity upon oxidation, producing over 100 separable compounds from a single precursor. As a first step toward unraveling this complexity, a method was developed for measuring the polarity and volatility of individual compounds in a complex mixture using two-dimensional gas chromatography, which is demonstrated in Chapter 2 for describing the oxidation of SOA formed from a biogenic compound (longifolene: C15H24). Several major products and tens of substantial minor products were produced, but none could be identified by traditional methods or have ever been isolated and studied in the laboratory. A major realization of this work was that soft ionization mass spectrometry could be used to identify the molecular mass and formula of these unidentified compounds, a major step toward a comprehensive description of complex mixtures. This was achieved by coupling gas chromatography to high resolution time-of-flight mass spectrometry with vacuum ultraviolet (VUV) photo-ionization. Chapters 3 and 4 describe this new analytical technique and its initial application to determine the structures of unknown compounds and formerly unresolvable mixtures, including a complete description of the chemical composition of two common petroleum products related to anthropogenic emissions: diesel fuel and motor oil. The distribution of hydrocarbon isomers in these mixtures - found to be mostly of branched, cyclic, and saturated - is described with unprecedented detail. Instead of measuring average bulk aerosol properties, the methods developed and applied in this work directly measure the polarity, volatility, and structure of individual components to allow a mechanistic understanding of oxidation processes. Novel characterizations of these complex mixtures are used to elucidate the role of structure and functionality in particle-phase oxidation, including in Chapter 4 the first measurements of relative reaction rates in a complex hydrocarbon particle. Molecular structure is observed to influence particle-phase oxidation in unexpected and important ways, with cyclization decreasing reaction rates by ~30% and branching increasing reaction rates by ~20-50%. The observed structural dependence is proposed to result in compositional changes in anthropogenic organic aerosol downwind of urban areas, which has been confirmed in subsequent work by applying the techniques described here. Measurement of organic aerosol components is extended to ambient environments through the development of instrumentation with the unprecedented capability to measure hourly concentrations and gas/particle partitioning of individual highly oxygenated organic compounds in the atmosphere. Chapters 5 and 6 describe development of new procedures and hardware for the calibration and analysis of oxygenates using the Semi-Volatile Thermal desorption Aerosol Gas chromatograph (SV-TAG), a custom instrument for in situ quantification of gas- and particle-phase organic compounds in the atmosphere. High time resolution measurement of oxygenated compounds is achieved through a reproducible and quantitative methodology for in situ "derivatization"--Replacing highly polar functional groups that cannot be analyzed by traditional gas chromatography with less polar groups. Implementation of a two-channel sampling system for the simultaneous collection of particle-phase and total gas-plus-particle phase samples allows for the first direct measurements of gas/particle partitioning in the atmosphere, significantly advancing the study of atmospheric composition and variability, as well as the processes governing condensation and re-volatilization. This work presents the first in situ measurements of a large suite of highly oxygenated biogenic oxidation products in both the gas- and particle-phase. Isoprene, the most ubiquitous biogenic emission, oxidizes to form 2-methyltetrols and C5 alkene triols, while [alpha]-pinene, the most common monoterpene, forms pinic, pinonic, hydroxyglutaric, and other acids. These compounds are reported in Chapter 7 with unprecedented time resolution and are shown for the first time to have a large gas-phase component, contrary to typical assumptions. Hourly comparisons of these products with anthropogenic aerosol components elucidate the interaction of human and natural emissions at two rural sites: the southeastern, U.S. and Amazonia, Brazil. Anthropogenic influence on SOA formation is proposed to occur through the increase in liquid water caused by anthropogenic sulfate. Furthermore, these unparalleled observations of gas/particle partitioning of biogenic oxidation products demonstrate that partitioning of oxygenates is unexpectedly independent of volatility: many volatile, highly oxygenated compounds have a large particle-phase component that is poorly described by traditional models. These novel conclusions are reached in part by applying the new frameworks developed in previous chapters to understand the properties of unidentified compounds, demonstrating the importance of detailed characterization of atmospheric organic mixtures. Comprehensive analysis of anthropogenic and biogenic emissions and oxidation product mixtures is coupled in this work with high time-resolution measurement of individual organic components to yield significant insights into the transformations of organic aerosols. Oxidation chemistry is observed in both laboratory and field settings to depend on molecular properties, volatility, and atmospheric composition. However, this work demonstrates that these complex processes can be understood through the quantification of individual known and unidentified compounds, combined with their classification into descriptive frameworks.