Download Free Characterization Theorems Inspired By The Hardy Rogers Map Ii Some Results In Cone Metric Spaces Book in PDF and EPUB Free Download. You can read online Characterization Theorems Inspired By The Hardy Rogers Map Ii Some Results In Cone Metric Spaces and write the review.

The book is suggested as collateral reading for people interested in "fixed point theorems for contractive type mappings". We continue the investigation of the rth-order Hardy Rogers map in the setting of cone metric spaces. Some open problems in the form of exercises are proposed. The reader comes to grasp with the nitty-gritty ideas of pure mathematical modeling in research. Construction of theorems and proof writing is developed. Researchers in fixed point theory and their students will find it a delight to read
This book serves as collateral reading for people interested in fixed point theorems for contractive mappings. The higher-order version of the Banach contraction principle is investigated in the setting of multiplicative b-metric space as well as other topics including application to graph theory. The book contains many exercises as the reader begins his or her own investigative inquire into fixed point theorems and related topics. Researchers will find it a delight to read. The exercises hold promise for further research ideas, and can lead to thesis of all sorts including at the postdoctoral level
Serves as collateral reading for people interested in "stability of iterative sequences for fixed points of contractive type mappings". People with interest in fixed point theory will find it a delight to read. Contains many exercises as the reader begins his or her own investigative inquiry.
It is an indisputable argument that the formulation of metrics (by Fréchet in the early 1900s) opened a new subject in mathematics called non-linear analysis after the appearance of Banach’s fixed point theorem. Because the underlying space of this theorem is a metric space, the theory that developed following its publication is known as metric fixed point theory. It is well known that metric fixed point theory provides essential tools for solving problems arising in various branches of mathematics and other sciences such as split feasibility problems, variational inequality problems, non-linear optimization problems, equilibrium problems, selection and matching problems, and problems of proving the existence of solutions of integral and differential equations are closely related to fixed point theory. For this reason, many people over the past seventy years have tried to generalize the definition of metric space and corresponding fixed point theory. This trend still continues. A few questions lying at the heart of the theory remain open and there are many unanswered questions regarding the limits to which the theory may be extended. Metric Structures and Fixed Point Theory provides an extensive understanding and the latest updates on the subject. The book not only shows diversified aspects of popular generalizations of metric spaces such as symmetric, b-metric, w-distance, G-metric, modular metric, probabilistic metric, fuzzy metric, graphical metric and corresponding fixed point theory but also motivates work on existing open problems on the subject. Each of the nine chapters—contributed by various authors—contains an Introduction section which summarizes the material needed to read the chapter independently of the others and contains the necessary background, several examples, and comprehensive literature to comprehend the concepts presented therein. This is helpful for those who want to pursue their research career in metric fixed point theory and its related areas. Features Explores the latest research and developments in fixed point theory on the most popular generalizations of metric spaces Description of various generalizations of metric spaces Very new topics on fixed point theory in graphical and modular metric spaces Enriched with examples and open problems This book serves as a reference for scientific investigators who need to analyze a simple and direct presentation of the fundamentals of the theory of metric fixed points. It may also be used as a text book for postgraduate and research students who are trying to derive future research scope in this area.
This book provides a clear exposition of the flourishing field of fixed point theory. Starting from the basics of Banach's contraction theorem, most of the main results and techniques are developed: fixed point results are established for several classes of maps and the three main approaches to establishing continuation principles are presented. The theory is applied to many areas of interest in analysis. Topological considerations play a crucial role, including a final chapter on the relationship with degree theory. Researchers and graduate students in applicable analysis will find this to be a useful survey of the fundamental principles of the subject. The very extensive bibliography and close to 100 exercises mean that it can be used both as a text and as a comprehensive reference work, currently the only one of its type.
This book is a course on real analysis (measure and integration theory plus additional topics) designed for beginning graduate students. Its focus is on helping the student pass a preliminary or qualifying examination for the Ph.D. degree.
"Fixed-point theory initially emerged in the article demonstrating existence of solutions of differential equations, which appeared in the second quarter of the 18th century (Joseph Liouville, 1837). Later on, this technique was improved as a method of successive approximations (Charles Emile Picard, 1890) which was extracted and abstracted as a fixed-point theorem in the framework of complete normed space (Stefan Banach, 1922). It ensures presence as well as uniqueness of a fixed point, gives an approximate technique to really locate the fixed point and the a priori and a posteriori estimates for the rate of convergence. It is an essential device in the theory of metric spaces. Subsequently, it is stated that fixed-point theory is initiated by Stefan Banach. Fixed-point theorems give adequate conditions under which there exists a fixed point for a given function and enable us to ensure the existence of a solution of the original problem. In an extensive variety of scientific issues, beginning from different branches of mathematics, the existence of a solution is comparable to the existence of a fixed point for a suitable mapping. The book "Fixed Point Theory & its Applications to Real World Problems" is an endeavour to present results in fixed point theory which are extensions, improvements and generalizations of classical and recent results in this area and touches on distinct research directions within the metric fixed-point theory. It provides new openings for further exploration and makes for an easily accessible source of knowledge. This book is apposite for young researchers who want to pursue their research in fixed-point theory and is the latest in the field, giving new techniques for the existence of a superior fixed point, a fixed point, a near fixed point, a fixed circle, a near fixed interval circle, a fixed disc, a near fixed interval disc, a coincidence point, a common fixed point, a coupled common fixed point, amiable fixed sets, strong coupled fixed points and so on, utilizing minimal conditions. It offers novel applications besides traditional applications which are applicable to real world problems. The book is self-contained and unified which will serve as a reference book to researchers who are in search of novel ideas. It will be a valued addition to the library"--
A mathematical study of the geometrical aspects of sets of both integral and fractional Hausdorff dimension. Considers questions of local density, the existence of tangents of such sets as well as the dimensional properties of their projections in various directions.
A mathematically rigorous introduction to fractals, emphasizing examples and fundamental ideas while minimizing technicalities.
Contents: Fixed Point Theory and Nonlinear Problems (Th Rassias)Global Linearization Iterative Methods and Nonlinear Partial Differential Equations III (M Altman)On Generalized Power Series and Generalized Operational Calculus and Its Application (M Al-Bassam)Multiple Solutions to Parametrized Nonlinear Differential Systems from Nielsen Fixed Point Theory (R Brown)The topology of Ind-Affine Sets (P Cherenack)Almost Approximately Polynomial Functions (P Cholewa)Cohomology Classes and Foliated Manifolds (M Craioveanu & M Puta)Bifurcation and Nonlinear Instability in Applied Mathematics (L Debnath)The Stability of Weakly Additive Functional (H Drljevic)Index Theory for G-Bundle Pairs with Applications to Borsuk-Ulam Type Theorems for G-Sphere Bundles (E Fadell & S Husseini)Nonlinear Approximation and Moment Problem (J S Hwang & G D Lin)Periods in Equicontinuous Topological Dynamical Systems (A Iwanik et al.)Continuation Theorems for Semi-Linear Equations in Banach Spaces: A Survey (J Mawhin & K Rybakowski)On Contractifiable Self-Mappings (P Meyers)Normal Structures and Nonexpansive Mappings in Banach Spaces (J Nelson et al.): Survey on Uniqueness and Classification Theorems for Minimal Surfaces (Th Rassias)Contractive Definitions (B Rhoades)On KY Fan's Theorem and Its Applications (S Singh)Fixed Points of Amenable Semigroups of Differentiable Operators (P Soardi)Research Problems on Nonlinear Equations (Th Rassias) Readership: Mathematicians and applied scientists. Keywords:Nonlinear Analysis;Nonlinear Partial Differential Equations III;Polynomial Functions;Cohomology Classes;Foliated Manifolds;Topological Dynamical Systems;Minimal Surfaces;Differentiable Operators;Nonlinear Equations