Download Free Characterization Problems In Mathematical Statistics Book in PDF and EPUB Free Download. You can read online Characterization Problems In Mathematical Statistics and write the review.

Provides the necessary skills to solve problems in mathematical statistics through theory, concrete examples, and exercises With a clear and detailed approach to the fundamentals of statistical theory, Examples and Problems in Mathematical Statistics uniquely bridges the gap between theory andapplication and presents numerous problem-solving examples that illustrate the relatednotations and proven results. Written by an established authority in probability and mathematical statistics, each chapter begins with a theoretical presentation to introduce both the topic and the important results in an effort to aid in overall comprehension. Examples are then provided, followed by problems, and finally, solutions to some of the earlier problems. In addition, Examples and Problems in Mathematical Statistics features: Over 160 practical and interesting real-world examples from a variety of fields including engineering, mathematics, and statistics to help readers become proficient in theoretical problem solving More than 430 unique exercises with select solutions Key statistical inference topics, such as probability theory, statistical distributions, sufficient statistics, information in samples, testing statistical hypotheses, statistical estimation, confidence and tolerance intervals, large sample theory, and Bayesian analysis Recommended for graduate-level courses in probability and statistical inference, Examples and Problems in Mathematical Statistics is also an ideal reference for applied statisticians and researchers.
This book deals with the characterization of probability distributions. It is well known that both the sum and the difference of two Gaussian independent random variables with equal variance are independent as well. The converse statement was proved independently by M. Kac and S. N. Bernstein. This result is a famous example of a characterization theorem. In general, characterization problems in mathematical statistics are statements in which the description of possible distributions of random variables follows from properties of some functions in these variables. In recent years, a great deal of attention has been focused upon generalizing the classical characterization theorems to random variables with values in various algebraic structures such as locally compact Abelian groups, Lie groups, quantum groups, or symmetric spaces. The present book is aimed at the generalization of some well-known characterization theorems to the case of independent random variables taking values in a locally compact Abelian group $X$. The main attention is paid to the characterization of the Gaussian and the idempotent distribution (group analogs of the Kac-Bernstein, Skitovich-Darmois, and Heyde theorems). The solution of the corresponding problems is reduced to the solution of some functional equations in the class of continuous positive definite functions defined on the character group of $X$. Group analogs of the Cramer and Marcinkiewicz theorems are also studied. The author is an expert in algebraic probability theory. His comprehensive and self-contained monograph is addressed to mathematicians working in probability theory on algebraic structures, abstract harmonic analysis, and functional equations. The book concludes with comments and unsolved problems that provide further stimulation for future research in the theory.
This book studies the problem of the decomposition of a given random variable introduction a sum of independent random variables (components). The central feature of the book is Feldman's use of powerful analytical techniques.
This book studies the problem of the decomposition of a given random variable introduction a sum of independent random variables (components). The central feature of the book is Feldman's use of powerful analytical techniques.
Mathematical Statistics: Basic Ideas and Selected Topics, Volume II presents important statistical concepts, methods, and tools not covered in the authors' previous volume. This second volume focuses on inference in non- and semiparametric models. It not only reexamines the procedures introduced in the first volume from a more sophisticated point o
It is well known that if two independent identically distributed random variables are Gaussian, then their sum and difference are also independent. It turns out that only Gaussian random variables have such property. This statement, known as the famous Kac-Bernstein theorem, is a typical example of a so-called characterization theorem. Characterization theorems in mathematical statistics are statements in which the description of possible distributions of random variables follows from properties of some functions of these random variables. The first results in this area are associated with famous 20th century mathematicians such as G. Pólya, M. Kac, S. N. Bernstein, and Yu. V. Linnik. By now, the corresponding theory on the real line has basically been constructed. The problem of extending the classical characterization theorems to various algebraic structures has been actively studied in recent decades. The purpose of this book is to provide a comprehensive and self-contained overview of the current state of the theory of characterization problems on locally compact Abelian groups. The book will be useful to everyone with some familiarity of abstract harmonic analysis who is interested in probability distributions and functional equations on groups.
This volume contains the papers from the Sixth Eugene Lukacs Symposium on ''Multidimensional Statistical Analysis and Random Matrices'', which was held at the Bowling Green State University, Ohio, USA, 29--30 March 1996. Multidimensional statistical analysis and random matrices have been the topics of great research. The papers presented in this volume discuss many varied aspects of this all-encompassing topic. In particular, topics covered include generalized statistical analysis, elliptically contoured distribution, covariance structure analysis, metric scaling, detection of outliers, density approximation, and circulant and band random matrices.