Download Free Characterization Of The P53 Tumor Suppressor And Mdm2 Oncoprotein In Human Tumors Book in PDF and EPUB Free Download. You can read online Characterization Of The P53 Tumor Suppressor And Mdm2 Oncoprotein In Human Tumors and write the review.

Decades of research on the tumor suppressor p53 have revealed that it plays a significant role as a "guardian of the genome," protecting cells against genotoxic stress. In recent years, p53 research has begun to move into the clinic in attempts to understand how p53 is frequently inactivated in-and sometimes even promotes-human cancer. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Medicine covers the rapid progress that has recently been made in basic and clinical research on p53. The contributors review new observations about its basic biology, providing updates on the functions of its isoforms and domains, the myriad stresses and signals that trigger its activation or repression, and its downstream effects on genome stability and the cell cycle that enforce tumor suppression in different cell and tissue types. They also discuss how p53 dysfunction contributes to cancer, exploring the various inherited and somatic mutations in the human TP53 gene, the impact of mutant p53 proteins on tumorigenesis, and the prognostic value and clinical outcomes of these mutations. Drugs that are being developed to respond to tumors harboring aberrant p53 are also described. This book is therefore essential reading for all cancer biologists, cell and molecular biologists, and pharmacologists concerned with the treatment of this disease.
Beverly A. Teicher and a panel of leading experts comprehensively describe for the first time in many years the state-of-the-art in animal tumor model research. The wide array of models detailed form the basis for the selection of compounds and treatments that go into clinical testing of patients, and include syngeneic models, human tumor xenograft models, orthotopic models, metastatic models, transgenic models, and gene knockout models. Synthesizing many years experience with all the major in vivo models currently available for the study of malignant disease, Tumor Models in Cancer Research provides preclinical and clinical cancer researchers alike with a comprehensive guide to the selection of these models, their effective use, and the optimal interpretation of their results.
This volume offers a comprehensive review of the functions of the p53 family. The contributors examine the normal roles of these transcription factors, their evolution, the regulatory mechanisms that control p53 activity, and the part played by p53 mutations in tumorigenesis.
TP53 gene mutations are present in more than half of all human cancers. The resulting proteins are mostly full-length with a single amino acid change and are abundantly expressed in cancer cells. Some of the mutant p53 proteins gain oncogenic functions (GOF) through which it actively contribute to the aberrant cell proliferation, increased resistance to apoptotic stimuli and ability to metastasize. Gain of function mutant p53 proteins can transcriptionally regulate the expression of a large plethora of target genes. This mainly occurs through the formation of oncogenic transcriptional competent complexes that include mutant p53 protein, known transcription factors, posttranslational modifiers and scaffold proteins. Mutant p53 protein can also transcriptionally regulate the expression of microRNAs, small non-coding RNAs that regulate gene expression at the posttranscriptional level. Each microRNA can putatively target the expression of hundred mRNAs and consequently impact on many cellular functions. Thus, gain of function mutant p53 proteins can exert their oncogenic activities through the modulation of both non-coding and coding regions of human genome. Over the past 3 decades, the regulation of p53 has been extensively studied. However, the regulation of mutant p53 remained largely unexplored. This snapshot focuses on recent discovery of mutant p53 GOF and regulation.
The current year (2004) marks the Silver Anniversary of the discovery of the p53 tumor suppressor. The emerging ?eld ?rst considered p53 as a viral antigen and then as an oncogene that cooperates with activated ras in transforming primary cells in culture. Fueling the concept of p53 acting as a transforming factor, p53 expression was markedly elevated in various transformed and tumorigenic cell lines when compared to normal cells. In a simple twist of fate, most of the studies conducted in those early years inadvertently relied on a point mutant of p53 that had been cloned from a normal mouse genomic library. A bona ?de wild-type p53 cDNA was subsequently isolated, ironically, from a mouse teratocarcinoma cell line. A decade after its discovery, p53 was shown to be a tumor suppressor that protects against cancer. It is now recognized that approximately half of all human tumors arise due to mutations within the p53 gene. As remarkable as this number may seem, it signi?cantly underrepresents how often the p53 pathway is targeted during tumorigenesis. It is my personal view, as well as many in the p53 ?eld, that the p53-signaling pathway is corrupted in nearly 100% of tumors. If you are interested in understanding cancer and how it develops, you must begin by studying p53 and its pathway. After demonstrating that p53 functions as a tumor suppressor the ?eld exploded and p53 became a major focus of scientists around the world.
This report considers the biological and behavioral mechanisms that may underlie the pathogenicity of tobacco smoke. Many Surgeon General's reports have considered research findings on mechanisms in assessing the biological plausibility of associations observed in epidemiologic studies. Mechanisms of disease are important because they may provide plausibility, which is one of the guideline criteria for assessing evidence on causation. This report specifically reviews the evidence on the potential mechanisms by which smoking causes diseases and considers whether a mechanism is likely to be operative in the production of human disease by tobacco smoke. This evidence is relevant to understanding how smoking causes disease, to identifying those who may be particularly susceptible, and to assessing the potential risks of tobacco products.
p53 has emerged as a key tumor suppressor and important target for novel cancer therapy. This book, written by world-leading p53 researchers including many of those who have shaped the field over the past 25 years, provides unique insights into the progress of the field and the prospects for better cancer diagnosis and therapy in the future.
​​The Hippo signaling pathway is rapidly gaining recognition as an important player in organ size control and tumorigenesis, and many leading scientists are showing increased interest in this growing field and it's relation to cancer. The chapters in this volume cover virtually all aspects of tumor biology, because members of the Hippo Pathway have been associated with numerous well-established cell signaling pathways, just to name a few; Ras, Wnt, TGFbeta and p53. Moreover, Hippo signaling is not solely involved in regulating “classic” tumor characteristics such as cell proliferation, survival and growth, but is also diversely involved in cell-autonomous and non-cell-autonomous differentiation, migration and organ size control. The primary audience are researchers interested in basic science in the areas of tumor suppression, cell cycle and size regulation, development and differentiation.