Download Free Characterization Of Drag Reducing Surfactant Systems By Rheology And Flow Birefringence Measurements Book in PDF and EPUB Free Download. You can read online Characterization Of Drag Reducing Surfactant Systems By Rheology And Flow Birefringence Measurements and write the review.

Turbulent drag reduction by additives has long been a hot research topic. This phenomenon is inherently associated with multifold expertise. Solutions of drag-reducing additives are usually viscoelastic fluids having complicated rheological properties. Exploring the characteristics of drag-reduced turbulent flows calls for uniquely designed experimental and numerical simulation techniques and elaborate theoretical considerations. Pertinently understanding the turbulent drag reduction mechanism necessities mastering the fundamentals of turbulence and establishing a proper relationship between turbulence and the rheological properties induced by additives. Promoting the applications of the drag reduction phenomenon requires the knowledge from different fields such as chemical engineering, mechanical engineering, municipal engineering, and so on. This book gives a thorough elucidation of the turbulence characteristics and rheological behaviors, theories, special techniques and application issues for drag-reducing flows by surfactant additives based on the state-of-the-art of scientific research results through the latest experimental studies, numerical simulations and theoretical analyses. Covers turbulent drag reduction, heat transfer reduction, complex rheology and the real-world applications of drag reduction Introduces advanced testing techniques, such as PIV, LDA, and their applications in current experiments, illustrated with multiple diagrams and equations Real-world examples of the topic’s increasingly important industrial applications enable readers to implement cost- and energy-saving measures Explains the tools before presenting the research results, to give readers coverage of the subject from both theoretical and experimental viewpoints Consolidates interdisciplinary information on turbulent drag reduction by additives Turbulent Drag Reduction by Surfactant Additives is geared for researchers, graduate students, and engineers in the fields of Fluid Mechanics, Mechanical Engineering, Turbulence, Chemical Engineering, Municipal Engineering. Researchers and practitioners involved in the fields of Flow Control, Chemistry, Computational Fluid Dynamics, Experimental Fluid Dynamics, and Rheology will also find this book to be a much-needed reference on the topic.
Abstract: At concentrations above CMC (critical micellization concentration) or temperatures above CMT (critical micellization temperature) surfactant molecules dissolved in aqueous solution self-assemble into colloidal aggregates such as micelles or vesicles. These colloidal aggregates vary in shape and size depending on a number of system conditions such as surfactant molecular structure, surfactant concentration, salt concentration, temperature, etc. Among the variety of micellar structures in solution, wormlike micelles resembling the long chain molecules of high polymers may reduce friction energy loss in turbulent flow by up to 90% at relatively low surfactant concentrations under appropriate flow and temperature conditions. This phenomenon is termed drag reduction (by surfactant additives) and it has significant potential impacts on fluid transport and on the environment. Among surfactant drag reducing additives, cationic surfactants with organic counterions have received the most attention in the past two decades mainly because of their excellent drag reducing ability, broad availability, low concentration requirements and general insensitivity to ionic metal impurities. Typical cationic surfactants studied for drag reduction are quaternary ammonium salts with one long alkyl chain (carbon number from 14 to 22) and methyl or hydroxyethyl groups in the other positions. They are, however, mildly toxic with poor biodegradability, so there is a need to develop more environmentally friendly surfactant drag reducing additives. Other types of surfactants such as anionics, zwitterionics and nonionics have also been studied. To obtain desired drag reducing properties, previous research has been focused on utilizing synergistic effects that may arise when two surfactant species are mixed. Mixed surfactant systems studied for drag reduction included cationic surfactants of mixed alkyl chain lengths, cationic/anionic, nonionic/nonionic, nonionic/anionic and zwitterionic/anionic surfactant mixtures in aqueous solutions and in water/co-solvent systems. Organic counterions added to dilute cationic surfactant aqueous solutions are effective in inducing and stabilizing wormlike micelle formation at relatively low counterion to surfactant molar ratios, thereby promoting their drag reducing effectiveness. The interactions of the cationic surfactant and organic counterion can be enhanced by tuning either or both of them, structurally and/or by concentration and molar ratio, to tailor-make highly efficient drag reducing systems suitable for different applications. Understanding the important role of organic counterions in the dynamics of the formation of cationic surfactant wormlike micelles and their networks is important. In this work, investigations have been conducted in how changes in the organic counterion chemical structure of a series of p-halobenzoates and counterion to surfactant ratio affect zeta potential, nanostructure, drag reduction and rheological properties. Also, certain mixed aromatic counterion systems were studied which showed excellent synergistic effects on promoting wormlike micellar branched networks and enhancing drag reducing effectiveness. In this work, an enclosed rotating disk apparatus was designed and constructed for screening novel surfactant species synthesized in chemistry laboratories. After correlating its drag reducing results with those obtained through the conventional pipe flow test system, this small scale apparatus is capable of testing materials for drag reduction effectiveness independently. A long range goal of this research is to develop effective low concentration surfactant systems with good drag reduction effectiveness. Guided by the correlations and understandings obtained in the past research, in this work, a number of new surfactants or counterions were selected or synthesized for exploratory drag reduction tests.
-Shear-Induced Transitions and Instabilities in Surfactant Wormlike Micelles By S. Lerouge, J.-F. Berret -Laser-Interferometric Creep Rate Spectroscopy of Polymers By V. A. Bershtein, P. N. Yakushev -Polymer Nanocomposites for Electro-Optics: Perspectives on Processing Technologies, Material Characterization, and Future Application K. Matras-Postolek, D. Bogdal
Providing a comprehensive review of the state-of-the-art advanced research in the field, Polymer Physics explores the interrelationships among polymer structure, morphology, and physical and mechanical behavior. Featuring contributions from renowned experts, the book covers the basics of important areas in polymer physics while projecting into the future, making it a valuable resource for students and chemists, chemical engineers, materials scientists, and polymer scientists as well as professionals in related industries.
Abstract: This paper explores the rheological behavior of drag reducing surfactant systems. It concentrates on the relationships between shear viscosity, shear rate, first normal stress difference, and shear stress.
This second edition Encyclopedia supplies nearly 350 gold standard articles on the methods, practices, products, and standards influencing the chemical industries. It offers expertly written articles on technologies at the forefront of the field to maximize and enhance the research and production phases of current and emerging chemical manufacturing practices and techniques. This collecting of information is of vital interest to chemical, polymer, electrical, mechanical, and civil engineers, as well as chemists and chemical researchers. A complete reconceptualization of the classic reference series the Encyclopedia of Chemical Processing and Design, whose first volume published in 1976, this resource offers extensive A-Z treatment of the subject in five simultaneously published volumes, with comprehensive indexing of all five volumes in the back matter of each tome. It includes material on the design of key unit operations involved with chemical processes; the design, unit operation, and integration of reactors and separation systems; process system peripherals such as pumps, valves, and controllers; analytical techniques and equipment; and pilot plant design and scale-up criteria. This reference contains well-researched sections on automation, equipment, design and simulation, reliability and maintenance, separations technologies, and energy and environmental issues. Authoritative contributions cover chemical processing equipment, engineered systems, and laboratory apparatus currently utilized in the field. It also presents expert overviews on key engineering science topics in property predictions, measurements and analysis, novel materials and devices, and emerging chemical fields. ALSO AVAILABLE ONLINE This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for both researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]
Supplying nearly 350 expertly-written articles on technologies that can maximize and enhance the research and production phases of current and emerging chemical manufacturing practices and techniques, this second edition provides gold standard articles on the methods, practices, products, and standards recently influencing the chemical industries. New material includes: design of key unit operations involved with chemical processes; design, unit operation, and integration of reactors and separation systems; process system peripherals such as pumps, valves, and controllers; analytical techniques and equipment; current industry practices; and pilot plant design and scale-up criteria.