Download Free Characterization Of Defects And Evaluation Of Material Quality Of Low Temperature Epitaxial Growth Book in PDF and EPUB Free Download. You can read online Characterization Of Defects And Evaluation Of Material Quality Of Low Temperature Epitaxial Growth and write the review.

This book systematically introduces physical characteristics and implementations of III-nitride wide bandgap semiconductor materials and electronic devices, with an emphasis on high-electron-mobility transistors (HEMTs). The properties of nitride semiconductors make the material very suitable for electronic devices used in microwave power amplification, high-voltage switches, and high-speed digital integrated circuits.
This subject is divided into two volumes. Volume I is on homoepitaxy with the necessary systems, techniques, and models for growth and dopant incorporation. Three chapters on homoepitaxy are followed by two chapters describing the different ways in which MBE may be applied to create insulator/Si stackings which may be used for three-dimensional circuits. The two remaining chapters in Volume I are devoted to device applications. The first three chapters of Volume II treat all aspects of heteroepitaxy with the exception of the epitaxial insulator/Si structures already treated in volume I.
Containing over 200 papers, this volume contains the proceedings of two symposia in the E-MRS series. Part I presents a state of the art review of the topic - Carbon, Hydrogen, Nitrogen and Oxygen in Silicon and in Other Elemental Semiconductors. There was strong representation from the industrial laboratories, illustrating that the topic is highly relevant for the semiconductor industry. The second part of the volume deals with a topic which is undergoing a process of convergence with two concerns that are more particularly application oriented. Firstly, the advanced instrumentation which, through the use of atomic force and tunnel microscopies, high resolution electron microscopy and other high precision analysis instruments, now allows for direct access to atomic mechanisms. Secondly, the technological development which in all areas of applications, particularly in the field of microelectronics and microsystems, requires as a result of the miniaturisation race, a precise mastery of the microscopic mechanisms.
An index to translations issued by the United States Joint Publications Research Service (JPRS).
Molecular Beam Epitaxy introduces the reader to the use of molecular beam epitaxy (MBE) in the generation of III-V and IV-VI compounds and alloys and describes the semiconductor and integrated optics reasons for using the technique. Topics covered include semiconductor superlattices by MBE; design considerations for MBE systems; periodic doping structure in gallium arsenide (GaAs); nonstoichiometry and carrier concentration control in MBE of compound semiconductors; and MBE techniques for IV-VI optoelectronic devices. The use of MBE to fabricate integrated optical devices and to study semiconductor surface and crystal physics is also considered. This book is comprised of eight chapters and opens with an overview of MBE as a crystal growth technique. The discussion then turns to the deposition of semiconductor superlattices of GaAs by MBE; important factors that must be considered in the design of a MBE system such as flux uniformity, crucible volume, heat shielding, source baffling, and shutters; and control of stoichiometry deviation in MBE growth of compound semiconductors, along with the effects of such deviation on the electronic properties of the grown films. The following chapters focus on the use of MBE techniques for growth of IV-VI optoelectronic devices; for fabrication of integrated optical devices; and for the study of semiconductor surface and crystal physics. The final chapter examines a superlattice consisting of a periodic sequence of ultrathin p- and n-doped semiconductor layers, possibly with intrinsic layers in between. This monograph will be of interest to chemists, physicists, and crystallographers.