Download Free Characterization In Compound Semiconductor Processing Book in PDF and EPUB Free Download. You can read online Characterization In Compound Semiconductor Processing and write the review.

Compound semiconductors such as Gallium Arsenide, Gallium Aluminum Arsenide, and Indium Phosphide are often difficult to characterize and present a variety of challenges from substrate preparation, to epitaxial growth to dielectric film deposition to dopant introduction. This book reviews the common classes of compound semiconductors, their physical, optical and electrical properties and the various types of methods used for characterizing them when analyzing for defects and application problems. The book features: -- Characterization of III-V Thin Films for Electronic and Optical applications -- Characterization of Dielectric Insulating Film layers -- A Special case study on Deep Level Transient Spectroscopy on GaAs -- Concise summaries of major characterization technologies for compound semiconductor materials, including Auger Electron Spectroscopy, Ballistic Electron Emission Microscopy, Energy-Dispersive X-Ray Spectroscopy, Neutron Activation Analysis and Raman Spectroscopy
"Characterization in Compound Semiconductor Processing is for scientists and engineers working with compound semiconductor materials and devices who are not characterization specialists. Materials and processes typically used in R&D and in the fabrication of GaAs, GaA1As, InP and HgCdTe based devices provide examples of common analytical problems. The book discusses a variety of characterization techniques to provide insight into how each individually, or in combination, might be used in solving problems associated with these materials. The book will help in the selection and application of the appropriate analytical techniques by its coverage of all stages of materials or device processing: substrate preparation, epitaxial growth, dielectric film deposition, contact formation and dopant introduction."--P. [4] of cover.
This book reviews the recent advances and current technologies used to produce microelectronic and optoelectronic devices from compound semiconductors. It provides a complete overview of the technologies necessary to grow bulk single-crystal substrates, grow hetero-or homoepitaxial films, and process advanced devices such as HBT's, QW diode lasers, etc.
Market: Those in government, industry, and academia interested in state-of-the-art knowledge on semiconductor characterization for research, development, and manufacturing. Based on papers given at an International Nist Workshop in January 1995, Semiconductor Characterization covers the unique characterization requirements of both silicon IC development and manufacturing, and compound semiconductor materials, devices, and manufacturing. Additional sections discuss technology trends and future requirements for compound semiconductor applications. Also highlighted are recent developments in characterization, including in- situ, in-FAB, and off-line analysis methods. The book provides a concise, effective portrayal of industry needs and problems in the important specialty of metrology for semiconductor technology.
The book describes developments in the crystal growth of bulk II-VI semiconductor materials. A fundamental, systematic, and in-depth study of the physical vapor transport (PVT) growth process is the key to producing high-quality single crystals of semiconductors. As such, the book offers a comprehensive overview of the extensive studies on ZnSe and related II-VI wide bandgap compound semiconductors, such as CdS, CdTe, ZnTe, ZnSeTe and ZnSeS. Further, it shows the detailed steps for the growth of bulk crystals enabling optical devices which can operate in the visible spectrum for applications such as blue light emitting diodes, lasers for optical displays and in the mid-IR wavelength range, high density recording, and military communications. The book then discusses the advantages of crystallization from vapor compared to the conventional melt growth: lower processing temperatures, the purification process associated with PVT, and the improved surface morphology of the grown crystals, as well as the necessary drawbacks to the PVT process, such as the low and inconsistent growth rates and the low yield of single crystals. By presenting in-situ measurements of transport rate, partial pressures and interferometry, as well as visual observations, the book provides detailed insights into in the kinetics during the PVT process. This book is intended for graduate students and professionals in materials science as well as engineers preparing and developing optical devices with semiconductors.
This volume is a collection of 96 papers presented at the above Conference. The scope of the work includes optical and electrical methods as well as techniques for structural and compositional characterization. The contributed papers report on topics such as X-ray diffraction, TEM, depth profiling, photoluminescence, Raman scattering and various electrical methods. Of particular interest are combinations of different techniques providing complementary information. The compound semiconductors reviewed belong mainly to the III-V and III-VI families. The papers in this volume will provide a useful reference on the implications of new technologies in the characterization of compound semiconductors.
This book provides a review of the state-of-the-advancing-art in growth, processing and devices from compound semiconductors. Consisting of the proceedings of an important topical conference held at the University of Florida, speakers from both the U.S. and Japan were present. This fascinating work discusses critical issues in growth and characterization by semi-insulating bulk crystals, with particular emphasis placed on the latest modification of gas sources. It includes the advantages, limitations, and techniques pertaining to chemical vapor deposition. This compilation presents the most recent advances in the new technologies involving compound semiconductors, thus it fills an important need in the fast-moving field of microelectronics. This one-of-a-kind resource provides contrasts and insight into U.S. and Japanese technologies and devices as well as indications of future directions. It provides a very up-to-date and comprehensive treatment of world-class scientific and technological developments in this astounding area of major commercial importance. These proceedings will be a useful, indispensable resource for scientific researchers, process engineers, and technology strategists.
"This is a comprehensive volume on analytical techniques used in materials science for the characterization of surfaces, interfaces and thin films. This flagship volume is a unique, stand-alone reference for materials science practitioners, process engineers, students and anyone with a need to know about the capabilities available in materials analysis. An encyclopedia of 50 concise articles, this book will also be a practical companion to the forthcoming books in the series."--Knovel.
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer series, as it is widely known, has succeeded in producing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.
The proceedings were published before the two symposia actually took place, and some of the papers presented were not received in time. The 21 that did make it discuss compound semiconductors from perspectives of recent developments in materials, growth, characterization, processing, device fabrication, and reliability. Among the specific topics are the non-crystallographic wet etching of gallium arsenide, fabricating an integrated optics One to Two optical switch, and the fabrication and materials characterization of pulsed laser deposited nickel silicide ohmic contacts to 4H n-SiC. Annotation copyrighted by Book News, Inc., Portland, OR