Download Free Characterization And Application Of Advanced Vlsi Interconnects Book in PDF and EPUB Free Download. You can read online Characterization And Application Of Advanced Vlsi Interconnects and write the review.

This Second Edition focuses on emerging topics and advances in the field of VLSI interconnections In the decade since High-Speed VLSI Interconnections was first published, several major developments have taken place in the field. Now, updated to reflect these advancements, this Second Edition includes new information on copper interconnections, nanotechnology circuit interconnects, electromigration in the copper interconnections, parasitic inductances, and RLC models for comprehensive analysis of interconnection delays and crosstalk. Each chapter is designed to exist independently or as a part of one coherent unit, and several appropriate exercises are provided at the end of each chapter, challenging the reader to gain further insight into the contents being discussed. Chapter subjects include: * Preliminary Concepts * Parasitic Resistances, Capacitances, and Inductances * Interconnection Delays * Crosstalk Analysis * Electromigration-Induced Failure Analysis * Future Interconnections High-Speed VLSI Interconnections, Second Edition is an indispensable reference for high-speed VLSI designers, RF circuit designers, and advanced students of electrical engineering.
Finding new materials for copper/low-k interconnects is critical to the continuing development of computer chips. While copper/low-k interconnects have served well, allowing for the creation of Ultra Large Scale Integration (ULSI) devices which combine over a billion transistors onto a single chip, the increased resistance and RC-delay at the smaller scale has become a significant factor affecting chip performance. Advanced Interconnects for ULSI Technology is dedicated to the materials and methods which might be suitable replacements. It covers a broad range of topics, from physical principles to design, fabrication, characterization, and application of new materials for nano-interconnects, and discusses: Interconnect functions, characterisations, electrical properties and wiring requirements Low-k materials: fundamentals, advances and mechanical properties Conductive layers and barriers Integration and reliability including mechanical reliability, electromigration and electrical breakdown New approaches including 3D, optical, wireless interchip, and carbon-based interconnects Intended for postgraduate students and researchers, in academia and industry, this book provides a critical overview of the enabling technology at the heart of the future development of computer chips.
This textbook comprehensively covers on-chip interconnect dimension and application of carbon nanomaterials for modeling VLSI interconnect and buffer circuits. It provides analysis of ultra-low power high speed nano-interconnects based on different facets such as material modeling, circuit modeling and the adoption of repeater insertion strategies and measurement techniques. It covers important topics including on-chip interconnects, interconnect modeling, electrical impedance modeling of on-chip interconnects, modeling of repeater buffer and variability analysis. Pedagogical features including solved problems and unsolved exercises are interspersed throughout the text for better understanding. Aimed at senior undergraduate and graduate students in the field of electrical engineering, electronics and communications engineering for courses on Advanced VLSI Interconnects/Advanced VLSI Design/VLSI Interconnects/VLSI Design Automation and Techniques, this book: Provides comprehensive coverage of fundamental concepts related to nanotube transistors and interconnects. Discusses properties and performance of practical nanotube devices and related applications. Covers physical and electrical phenomena of carbon nanotubes, as well as applications enabled by this nanotechnology. Discusses the structure, properties, and characteristics of graphene-based on-chip interconnect. Examines interconnect power and interconnect delay issues arising due to downscaling of device size.
In Advanced ULSI interconnects – fundamentals and applications we bring a comprehensive description of copper-based interconnect technology for ultra-lar- scale integration (ULSI) technology for integrated circuit (IC) application. In- grated circuit technology is the base for all modern electronics systems. You can ?nd electronics systems today everywhere: from toys and home appliances to a- planes and space shuttles. Electronics systems form the hardware that together with software are the bases of the modern information society. The rapid growth and vast exploitation of modern electronics system create a strong demand for new and improved electronic circuits as demonstrated by the amazing progress in the ?eld of ULSI technology. This progress is well described by the famous “Moore’s law” which states, in its most general form, that all the metrics that describe integrated circuit performance (e. g. , speed, number of devices, chip area) improve expon- tially as a function of time. For example, the number of components per chip d- bles every 18 months and the critical dimension on a chip has shrunk by 50% every 2 years on average in the last 30 years. This rapid growth in integrated circuits te- nology results in highly complex integrated circuits with an increasing number of interconnects on chips and between the chip and its package. The complexity of the interconnect network on chips involves an increasing number of metal lines per interconnect level, more interconnect levels, and at the same time a reduction in the interconnect line critical dimensions.
Electrostatic discharge (ESD) continues to impact semiconductor components and systems as technologies scale from micro- to nano-electronics. This book studies electrical overstress, ESD, and latchup from a whole-chip ESD design synthesis approach. It provides a clear insight into the integration of ESD protection networks from a generalist perspective, followed by examples in specific technologies, circuits, and chips. Uniquely both the semiconductor chip integration issues and floorplanning of ESD networks are covered from a ‘top-down' design approach. Look inside for extensive coverage on: integration of cores, power bussing, and signal pins in DRAM, SRAM, CMOS image processing chips, microprocessors, analog products, RF components and how the integration influences ESD design and integration architecturing of mixed voltage, mixed signal, to RF design for ESD analysis floorplanning for peripheral and core I/O designs, and the implications on ESD and latchup guard ring integration for both a ‘bottom-up' and ‘top-down' methodology addressing I/O guard rings, ESD guard rings, I/O to I/O, and I/O to core classification of ESD power clamps and ESD signal pin circuitry, and how to make the correct choice for a given semiconductor chip examples of ESD design for the state-of-the-art technologies discussed, including CMOS, BiCMOS, silicon on insulator (SOI), bipolar technology, high voltage CMOS (HVCMOS), RF CMOS, and smart power practical methods for the understanding of ESD circuit power distribution, ground rule development, internal bus distribution, current path analysis, quality metrics ESD: Design and Synthesis is a continuation of the author's series of books on ESD protection. It is an essential reference for: ESD, circuit, and semiconductor engineers; design synthesis team leaders; layout design, characterisation, floorplanning, test and reliability engineers; technicians; and groundrule and test site developers in the manufacturing and design of semiconductor chips. It is also useful for graduate and undergraduate students in electrical engineering, semiconductor sciences, and manufacturing sciences, and on courses involving the design of ESD devices, chips and systems. This book offers a useful insight into the issues that confront modern technology as we enter the nano-electronic era.
Finding new materials for copper/low-k interconnects is critical to the continuing development of computer chips. While copper/low-k interconnects have served well, allowing for the creation of Ultra Large Scale Integration (ULSI) devices which combine over a billion transistors onto a single chip, the increased resistance and RC-delay at the smaller scale has become a significant factor affecting chip performance. Advanced Interconnects for ULSI Technology is dedicated to the materials and methods which might be suitable replacements. It covers a broad range of topics, from physical principles to design, fabrication, characterization, and application of new materials for nano-interconnects, and discusses: Interconnect functions, characterisations, electrical properties and wiring requirements Low-k materials: fundamentals, advances and mechanical properties Conductive layers and barriers Integration and reliability including mechanical reliability, electromigration and electrical breakdown New approaches including 3D, optical, wireless interchip, and carbon-based interconnects Intended for postgraduate students and researchers, in academia and industry, this book provides a critical overview of the enabling technology at the heart of the future development of computer chips.
The trend in design and manufacturing of very large-scale integrated (VLSI) circuits is towards smaller devices on increasing wafer dimensions. VLSI is the inter-disciplinary science of the process of creating an integrated circuit (IC) by combining thousands of transistors into a single chip. VLSI design can reduce the area of the circuit, making it less expensive and requiring less power.The book gives an understanding of the underlying principles of the subject. It not only focuses on circuit design process obeying VLSI rules but also on technological aspects of prototyping and fabrication. All the clocking processes, interconnects, and circuits of CMOS are explained in this book in an understandable format. The book provides contents on VLSI Physical Design Automation, Design of VLSI Devices and also its Impact on Physical Design.The book is intended as a reference book for senior undergraduate, first-year post graduate students, researchers as well as academicians in VLSI design, electronics & electrical engineering, and materials science. The basics and applications of VLSI design from STA, PDA and VLSI Testing along with FPGA based Prototyping are covered in a comprehensive manner.The latest technology used in VLSI design is discussed along with the available tools for FPGA prototyping as well as ASIC design. Each unit contains technical questions with solutions at the end.Technical topics discussed in the book include: • Static Timing Analysis• CMOS Layout and Design rules• Physical Design Automation• Testing of VLSI Circuits• Software tools for Frontend and Backend design.