Download Free Chapter Functional Near Infrared Spectroscopy And Diffuse Optical Tomography In Neuroscience Book in PDF and EPUB Free Download. You can read online Chapter Functional Near Infrared Spectroscopy And Diffuse Optical Tomography In Neuroscience and write the review.

Functional Near Infrared Spectroscopy and Diffuse Optical Tomography in Neuroscience.
Jöbsis was the first to describe the in vivo application of near-infrared spectroscopy (NIRS), also called diffuse optical spectroscopy (DOS). NIRS was originally designed for the clinical monitoring of tissue oxygenation, and today it has also become a useful tool for neuroimaging studies (functional near-infrared spectroscopy, fNIRS). However, difficulties in the selective and quantitative measurements of tissue hemoglobin (Hb), which have been central in the NIRS field for over 40 years, remain to be solved. To overcome these problems, time-domain (TD) and frequency-domain (FD) measurements have been tried. Presently, a wide range of NIRS instruments are available, including commonly available commercial instruments for continuous wave (CW) measurements, based on the modified Beer–Lambert law (steady-state domain measurements). Among these measurements, the TD measurement is the most promising approach, although compared with CW and FD measurements, TD measurements are less common, due to the need for large and expensive instruments with poor temporal resolution and limited dynamic range. However, thanks to technological developments, TD measurements are increasingly being used in research, and also in various clinical settings. This Special Issue highlights issues at the cutting edge of TD DOS and diffuse optical tomography (DOT). It covers all aspects related to TD measurements, including advances in hardware, methodology, the theory of light propagation, and clinical applications.
This e-book includes the latest outcomes produced by a broad range of fNIRS research with activation of prefrontal cortex, from methodological one to clinical one, providing a forum for scientists planning functional studies of prefrontal brain activation. Reading this book, one will find the possibility that fNIRS could replace fMRI in the near future, and realize that even our aesthetic feeling is measurable. This will serve as a reference repository of knowledge from these fields as well as a conduit of information from leading researchers. In addition it offers an extensive cross-referencing system that will facilitate search and retrieval of information about NIRS measurements in activation studies. Researchers interested in fNIRS would benefit from an overview about its potential utilities for future research directions.
The Handbook of Neurophotonics provides a dedicated overview of neurophotonics, covering the use of advanced optical technologies to record, stimulate, and control the activity of the brain, yielding new insight and advantages over conventional tools due to the adaptability and non-invasive nature of light. Including 32 colour figures, this book addresses functional studies of neurovascular signaling, metabolism, electrical excitation, and hemodynamics, as well as clinical applications for imaging and manipulating brain structure and function. The unifying theme throughout is not only to highlight the technology, but to show how these novel methods are becoming critical to breakthroughs that will lead to advances in our ability to manage and treat human diseases of the brain. Key Features: Provides the first dedicated book on state-of-the-art optical techniques for sensing and imaging across at the cellular, molecular, network, and whole brain levels. Highlights how the methods are used for measurement, control, and tracking of molecular events in live neuronal cells, both in basic research and clinical practice. Covers the entire spectrum of approaches, from optogenetics to functional methods, photostimulation, optical dissection, multiscale imaging, microscopy, and structural imaging. Includes chapters that show use of voltage-sensitive dye imaging, hemodynamic imaging, multiphoton imaging, temporal multiplexing, multiplane microscopy, optoacoustic imaging, near-infrared spectroscopy, and miniature neuroimaging devices to track cortical brain activity.
This volume covers the latest developments in optical imaging of the brain which is becoming an increasingly important functional neuroimaging method. Optical intrinsic signals offer unrivaled temporal and spatial resolution of functional measurements of the exposed brain cortex in animals and humans. Near-infrared spectroscopy and imaging ap proaches permit the noninvasive functional assessment of the human brain at bedside. Main advantages of these optical techniques are the biochemical specificity of the meas urements and the potential of measuring correlates of intracellular and intravascular oxy genation simultaneously. Recent data indicate that one may also measure a more direct correlate of neuronal activity associated with changes in light scattering. In this volume, recent technical progress of the optical method is covered as well as the physiological basis of the measurements. In simultaneous studies, near-infrared spec troscopy measurements are directly compared to other functional methods, especially PET and fMRI and examples are given for new applications of the NIRS-method. Based on re sults obtained with optical methods and other functional techniques the latest in our under standing of the coupling of neuronal activity and cerebral blood flow response is reviewed. This is an important basis for a better understanding of all functional neuroi maging methods which rely on neurovascular coupling such as PET, SPET and fMRI. Fi nally the optical method is put into the perspective of presently available functional neuroimaging methods including fMRI, PET, MEG and EEG.
Jöbsis was the first to describe the in vivo application of near-infrared spectroscopy (NIRS), also called diffuse optical spectroscopy (DOS). NIRS was originally designed for the clinical monitoring of tissue oxygenation, and today it has also become a useful tool for neuroimaging studies (functional near-infrared spectroscopy, fNIRS). However, difficulties in the selective and quantitative measurements of tissue hemoglobin (Hb), which have been central in the NIRS field for over 40 years, remain to be solved. To overcome these problems, time-domain (TD) and frequency-domain (FD) measurements have been tried. Presently, a wide range of NIRS instruments are available, including commonly available commercial instruments for continuous wave (CW) measurements, based on the modified Beer-Lambert law (steady-state domain measurements). Among these measurements, the TD measurement is the most promising approach, although compared with CW and FD measurements, TD measurements are less common, due to the need for large and expensive instruments with poor temporal resolution and limited dynamic range. However, thanks to technological developments, TD measurements are increasingly being used in research, and also in various clinical settings. This Special Issue highlights issues at the cutting edge of TD DOS and diffuse optical tomography (DOT). It covers all aspects related to TD measurements, including advances in hardware, methodology, the theory of light propagation, and clinical applications.
Here you'll find more than 500 entries from the world's leading experts in the field on the basic concepts, methodologies, and applications in clinical trials. The range of topics includes: basic statistical concepts, design and analysis of clinical trials, ethics, regulatory issues, and methodologies for clinical data management and analysis
Neurocognitive Mechanisms of Attention: Computational Models, Physiology, and Disease States describes the brain mechanisms underlying the attention control system, how those mechanisms are examined, how they operate in different disease states, and methods for improving them. Conceptual models of attention further explore their functional operation. Coverage includes the different types of attention, processing paths, brain anatomy, and attention’s role in memory and movement. Factors affecting attention are explored including nutrition, exercise, and genetics. Neurocognitive disorders impacting attention are discussed including autism, ADHD, OCD, depression, anxiety, schizophrenia, Alzheimer’s and Parkinson’s Disease. Assessment methods and treatments are uniquely set against the backdrop of current conceptual, computational, and oscillatory-based models to encourage researchers to pursue continued development of new diagnostic and therapeutic tools. Examines brain mechanisms underlying different types of attention Explores how nutrition, exercise, genetics and more impact attention Identifies impact on attention of neurocognitive diseases and disorders Includes therapeutic advances to improve attention Provides computational models via companion website