Download Free Chaotic Mechanics In Systems With Impacts And Friction Book in PDF and EPUB Free Download. You can read online Chaotic Mechanics In Systems With Impacts And Friction and write the review.

This book is devoted to the theory of chaotic oscillations in mechanical systems. Detailed descriptions of the basic types of nonlinearity ? impacts and dry friction ? are presented. The properties of such behavior are discussed, and the numerical and experimental results obtained by the authors are presented.The dynamic properties of systems described here can be useful in the proper design and use of mechanics where such behavior still creates problems.This book will be very useful for anyone with a fundamental knowledge of nonlinear mechanics who is beginning research in the field.
This book is aimed primarily towards physicists and mechanical engineers specializing in modeling, analysis, and control of discontinuous systems with friction and impacts. It fills a gap in the existing literature by offering an original contribution to the field of discontinuous mechanical systems based on mathematical and numerical modeling as well as the control of such systems. Each chapter provides the reader with both the theoretical background and results of verified and useful computations, including solutions of the problems of modeling and application of friction laws in numerical computations, results from finding and analyzing impact solutions, the analysis and control of dynamical systems with discontinuities, etc. The contents offer a smooth correspondence between science and engineering and will allow the reader to discover new ideas. Also emphasized is the unity of diverse branches of physics and mathematics towards understanding complex piecewise-smooth dynamical systems. Mathematical models presented will be important in numerical experiments, experimental measurements, and optimization problems found in applied mechanics.
Rapid developments in nonlinear dynamics and chaos theory have led to publication of many valuable monographs and books. However, most of these texts are devoted to the classical nonlinear dynamics systems, for example the Duffing or van der Pol oscillators, and either neglect or refer only briefly to systems with motion-dependent discontinuities. In engineering practice a good part of problems is discontinuous in nature, due to either deliberate reasons such as the introduction of working clearance, and/or the finite accuracy of the manufacturing processes.The main objective of this volume is to provide a general methodology for describing, solving and analysing discontinuous systems. It is compiled from the dedicated contributions written by experts in the field of applied nonlinear dynamics and chaos.The main focus is on mechanical engineering problems where clearances, piecewise stiffness, intermittent contact, variable friction or other forms of discontinuity occur. Practical applications include vibration absorbers, percussive drilling of hard materials and dynamics of metal cutting.
This undergraduate textbook is a rigorous mathematical introduction to dynamical systems and an accessible guide for students transitioning from calculus to advanced mathematics. It has many student-friendly features, such as graded exercises that range from straightforward to more difficult with hints, and includes concrete applications of real analysis and metric space theory to dynamical problems. Proofs are complete and carefully explained, and there is opportunity to practice manipulating algebraic expressions in an applied context of dynamical problems. After presenting a foundation in one-dimensional dynamical systems, the text introduces students to advanced subjects in the latter chapters, such as topological and symbolic dynamics. It includes two-dimensional dynamics, Sharkovsky's theorem, and the theory of substitutions, and takes special care in covering Newton's method. Mathematica code is available online, so that students can see implementation of many of the dynamical aspects of the text.
This book aims to familiarize the reader with the essential properties of the chaotic dynamics of Hamiltonian systems by avoiding specialized mathematical tools, thus making it easily accessible to a broader audience of researchers and students. Unique material on the most intriguing and fascinating topics of unsolved and current problems in contemporary chaos theory is presented. The coverage includes: separatrix chaos; properties and a description of systems with non-ergodic dynamics; the distribution of Poincar‚ recurrences and their role in transport theory; dynamical models of the Maxwell's Demon, the occurrence of persistent fluctuations, and a detailed discussion of their role in the problem underlying the foundation of statistical physics; the emergence of stochastic webs in phase space and their link to space tiling with periodic (crystal type) and aperiodic (quasi-crystal type) symmetries. This second edition expands on pseudochaotic dynamics with weak mixing and the new phenomenon of fractional kinetics, which is crucial to the transport properties of chaotic motion. The book is ideally suited to all those who are actively working on the problems of dynamical chaos as well as to those looking for new inspiration in this area. It introduces the physicist to the world of Hamiltonian chaos and the mathematician to actual physical problems.The material can also be used by graduate students.
Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Sample Chapter(s). Introduction (164 KB). Chapter 1: First Encounter with Chaos (1,323 KB). Contents: First Encounter with Chaos; The Language of Dynamical Systems; Examples of Chaotic Behaviors; Probabilistic Approach to Chaos; Characterization of Chaotic Dynamical Systems; From Order to Chaos in Dissipative Systems; Chaos in Hamiltonian Systems; Chaos and Information Theory; Coarse-Grained Information and Large Scale Predictability; Chaos in Numerical and Laboratory Experiments; Chaos in Low Dimensional Systems; Spatiotemporal Chaos; Turbulence as a Dynamical System Problem; Chaos and Statistical Mechanics: Fermi-Pasta-Ulam a Case Study. Readership: Students and researchers in science (physics, chemistry, mathematics, biology) and engineering.
Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.
This book presents the theoretical frame for studying lumped nonsmooth dynamical systems: the mathematical methods are recalled, and adapted numerical methods are introduced (differential inclusions, maximal monotone operators, Filippov theory, Aizerman theory, etc.). Tools available for the analysis of classical smooth nonlinear dynamics (stability analysis, the Melnikov method, bifurcation scenarios, numerical integrators, solvers, etc.) are extended to the nonsmooth frame. Many models and applications arising from mechanical engineering, electrical circuits, material behavior and civil engineering are investigated to illustrate theoretical and computational developments.
This book presents the theoretical frame for studying lumped nonsmooth dynamical systems: the mathematical methods are recalled, and adapted numerical methods are introduced (differential inclusions, maximal monotone operators, Filippov theory, Aizerman theory, etc.). Tools available for the analysis of classical smooth nonlinear dynamics (stability analysis, the Melnikov method, bifurcation scenarios, numerical integrators, solvers, etc.) are extended to the nonsmooth frame. Many models and applications arising from mechanical engineering, electrical circuits, material behavior and civil engineering are investigated to illustrate theoretical and computational developments.