Download Free Chaotic Dna Dynamics Book in PDF and EPUB Free Download. You can read online Chaotic Dna Dynamics and write the review.

A general systems theory model predicts quasiperiodic Penrose tiling pattern for the nested coiled structure of the DNA molecule in the chromosome resulting in maximum packing efficiency and unified whole fuzzy logic network architecture with ordered two-way signal transmission between the coding and non-coding (junk DNA) regions.Junk DNA are not redundant. Modification of the DNA base sequence structure at any location may have significant noticeable effects on the function of the DNA molecule as a whole. This book helps us understand the cooperative existence of individual components for optimum performance of the system.
Applications of Fractional Calculus to Modeling in Dynamics and Chaos aims to present novel developments, trends, and applications of fractional-order derivatives with power law and Mittag-Leffler kernel in the areas of chemistry, mechanics, chaos, epidemiology, fluid mechanics, modeling, and engineering. Non-singular and non-local fractional-order derivatives have been applied in different chapters to describe complex problems. The book offers theory and practical applications for the solutions of real-life problems and will be of interest to graduate-level students, educators, researchers, and scientists interested in mathematical modeling and its diverse applications. Features Discusses real-world problems, theory, and applications Covers new developments and advances in the various areas of nonlinear dynamics, signal processing, and chaos Suitable to teach master’s and/or PhD-level graduate students, and can be used by researchers, from any field of the social, health, and physical sciences
The physics and mathematics of nonlinear dynamics, chaotic and complex systems constitute some of the most fascinating developments of late twentieth century science. It turns out that chaotic bahaviour can be understood, and even utilized, to a far greater degree than had been suspected. Surprisingly, universal constants have been discovered. The implications have changed our understanding of important phenomena in physics, biology, chemistry, economics, medicine and numerous other fields of human endeavor. In this book, two dozen scientists and mathematicians who were deeply involved in the "nonlinear revolution" cover most of the basic aspects of the field.
DNA or Deoxyribonucleic Acid computing is an emerging branch of computing that uses DNA sequence, biochemistry, and hardware for encoding genetic information in computers. Here, information is represented by using the four genetic alphabets or DNA bases, namely A (Adenine), G (Guanine), C (Cytosine), and T (Thymine), instead of the binary representation (1 and 0) used by traditional computers. This is achieved because short DNA molecules of any arbitrary sequence of A, G, C, and T can be synthesized to order. DNA computing is mainly popular for three reasons: (i) speed (ii) minimal storage requirements, and (iii) minimal power requirements. There are many applications of DNA computing in the field of computer science. Nowadays, DNA computing is widely used in cryptography for achieving a strong security technique, so that unauthorized users are unable to retrieve the original data content. In DNA-based encryption, data are encrypted by using DNA bases (A, T, G, and C) instead of 0 and 1. As four DNA bases are used in the encryption process, DNA computing supports more randomness and makes it more complex for attackers or malicious users to hack the data. DNA computing is also used for data storage because a large number of data items can be stored inside the condensed volume. One gram of DNA holds approx DNA bases or approx 700 TB. However, it takes approx 233 hard disks to store the same data on 3 TB hard disks, and the weight of all these hard disks can be approx 151 kilos. In a cloud environment, the Data Owner (DO) stores their confidential encrypted data outside of their own domain, which attracts many attackers and hackers. DNA computing can be one of the best solutions to protect the data of a cloud server. Here, the DO can use DNA bases to encrypt the data by generating a long DNA sequence. Another application of DNA computing is in Wireless Sensor Network (WSN). Many researchers are trying to improve the security of WSN by using DNA computing. Here, DNA cryptography is used along with Secure Socket Layer (SSL) that supports a secure medium to exchange information. However, recent research shows some limitations of DNA computing. One of the critical issues is that DNA cryptography does not have a strong mathematical background like other cryptographic systems. This edited book is being planned to bring forth all the information of DNA computing. Along with the research gaps in the currently available books/literature, this edited book presents many applications of DNA computing in the fields of computer science. Moreover, research challenges and future work directions in DNA computing are also provided in this edited book. This edited book gives an overall detail of DNA computing and the fundamentals of cryptography Many applications of DNA computing in computer science fields, such as cryptography, cloud computing, big data storage, Wireless Sensor Network (WSN) security, and many more, are presented in different chapters of this edited book Research challenges along with many future work directions in DNA computing are presented in this edited book
This book introduces readers to the full range of current and background activity in the rapidly growing field of nonlinear dynamics. It uses a step-by-step introduction to dynamics and geometry in state space to help in understanding nonlinear dynamics and includes a thorough treatment of both differential equation models and iterated map models as well as a derivation of the famous Feigenbaum numbers. It is the only introductory book available that includes the important field of pattern formation and a survey of the controversial questions of quantum chaos. This second edition has been restructured for easier use and the extensive annotated references are updated through January 2000 and include many web sites for a number of the major nonlinear dynamics research centers. With over 200 figures and diagrams, analytic and computer exercises this book is a necessity for both the classroom and the lab.
This book presents the latest research results in the area of applied nonlinear dynamics and chaos theory. Papers by three academic generations address new applications of nonlinear dynamics to mechanics, including fluid-structure interaction, machining and mechanics of solids, and many other applications.
Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology—and even well beyond. Wherever quantitative modeling and analysis of complex, nonlinear phenomena is required, chaos theory and its methods can play a key role. This volume concentrates on reviewing the most relevant contemporary applications of chaotic nonlinear systems as they apply to the various cutting-edge branches of engineering. The book covers the theory as applied to robotics, electronic and communication engineering (for example chaos synchronization and cryptography) as well as to civil and mechanical engineering, where its use in damage monitoring and control is explored). Featuring contributions from active and leading research groups, this collection is ideal both as a reference and as a ‘recipe book’ full of tried and tested, successful engineering applications
Backstepping Control of Nonlinear Dynamical Systems addresses both the fundamentals of backstepping control and advances in the field. The latest techniques explored include ‘active backstepping control’, ‘adaptive backstepping control’, ‘fuzzy backstepping control’ and ‘adaptive fuzzy backstepping control’. The reference book provides numerous simulations using MATLAB and circuit design. These illustrate the main results of theory and applications of backstepping control of nonlinear control systems. Backstepping control encompasses varied aspects of mechanical engineering and has many different applications within the field. For example, the book covers aspects related to robot manipulators, aircraft flight control systems, power systems, mechanical systems, biological systems and chaotic systems. This multifaceted view of subject areas means that this useful reference resource will be ideal for a large cross section of the mechanical engineering community. Details the real-world applications of backstepping control Gives an up-to-date insight into the theory, uses and application of backstepping control Bridges the gaps for different fields of engineering, including mechanical engineering, aeronautical engineering, electrical engineering, communications engineering, robotics and biomedical instrumentation
Ein angesehener Bestseller - jetzt in der 2.aktualisierten Auflage! In diesem Buch finden Sie die aktuellsten Forschungsergebnisse auf dem Gebiet nichtlinearer Dynamik und Chaos, einem der am schnellsten wachsenden Teilgebiete der Mathematik. Die seit der ersten Auflage hinzugekommenen Erkenntnisse sind in einem zusätzlichen Kapitel übersichtlich zusammengefasst.
foreword by Hermann Haken For the past twenty years Scott Kelso's research has focused on extending the physical concepts of self- organization and the mathematical tools of nonlinear dynamics to understand how human beings (and human brains) perceive, intend, learn, control, and coordinate complex behaviors. In this book Kelso proposes a new, general framework within which to connect brain, mind, and behavior.Kelso's prescription for mental life breaks dramatically with the classical computational approach that is still the operative framework for many newer psychological and neurophysiological studies. His core thesis is that the creation and evolution of patterned behavior at all levels--from neurons to mind--is governed by the generic processes of self-organization. Both human brain and behavior are shown to exhibit features of pattern-forming dynamical systems, including multistability, abrupt phase transitions, crises, and intermittency. Dynamic Patterns brings together different aspects of this approach to the study of human behavior, using simple experimental examples and illustrations to convey essential concepts, strategies, and methods, with a minimum of mathematics. Kelso begins with a general account of dynamic pattern formation. He then takes up behavior, focusing initially on identifying pattern-forming instabilities in human sensorimotor coordination. Moving back and forth between theory and experiment, he establishes the notion that the same pattern-forming mechanisms apply regardless of the component parts involved (parts of the body, parts of the nervous system, parts of society) and the medium through which the parts are coupled. Finally, employing the latest techniques to observe spatiotemporal patterns of brain activity, Kelso shows that the human brain is fundamentally a pattern forming dynamical system, poised on the brink of instability. Self-organization thus underlies the cooperative action of neurons that produces human behavior in all its forms.