Download Free Chaotic Behaviour Of Deterministic Dissipative Systems Book in PDF and EPUB Free Download. You can read online Chaotic Behaviour Of Deterministic Dissipative Systems and write the review.

This graduate text surveys both the theoretical and experimental aspects of deterministic chaotic behaviour.
One of the most important routes to chaos is the chaotic intermittency. However, there are many cases that do not agree with the classical theoretical predictions. In this book, an extended theory for intermittency in one-dimensional maps is presented. A new general methodology to evaluate the reinjection probability density function (RPD) is developed in Chapters 5 to 8. The key of this formulation is the introduction of a new function, called M(x), which is used to calculate the RPD function. The function M(x) depends on two integrals. This characteristic reduces the influence on the statistical fluctuations in the data series. Also, the function M(x) is easy to evaluate from the data series, even for a small number of numerical or experimental data. As a result, a more general form for the RPD is found; where the classical theory based on uniform reinjection is recovered as a particular case. The characteristic exponent traditionally used to characterize the intermittency type, is now a function depending on the whole map, not just on the local map. Also, a new analytical approach to obtain the RPD from the mathematical expression of the map is presented. In this way all cases of non standard intermittencies are included in the same frame work. This methodology is extended to evaluate the noisy reinjection probability density function (NRPD), the noisy probability of the laminar length and the noisy characteristic relation. This is an important difference with respect to the classical approach based on the Fokker-Plank equation or Renormalization Group theory, where the noise effect was usually considered just on the local Poincaré map. Finally, in Chapter 9, a new scheme to evaluate the RPD function using the Perron-Frobenius operator is developed. Along the book examples of applications are described, which have shown very good agreement with numerical computations.
The physics and mathematics of nonlinear dynamics, chaotic and complex systems constitute some of the most fascinating developments of late twentieth century science. It turns out that chaotic bahaviour can be understood, and even utilized, to a far greater degree than had been suspected. Surprisingly, universal constants have been discovered. The implications have changed our understanding of important phenomena in physics, biology, chemistry, economics, medicine and numerous other fields of human endeavor. In this book, two dozen scientists and mathematicians who were deeply involved in the "nonlinear revolution" cover most of the basic aspects of the field.
This book deals with the bifurcation and chaotic aspects of damped and driven nonlinear oscillators. The analytical and numerical aspects of the chaotic dynamics of these oscillators are covered, together with appropriate experimental studies using nonlinear electronic circuits. Recent exciting developments in chaos research are also discussed, such as the control and synchronization of chaos and possible technological applications.
Inspired by the general configuration characteristics of automatic production lines, the author discusses the modelisation of important sectors of a factory. Typical topics such as parts feeders, part orienting devices, insertion mechanisms and buffered flows are analysed using random evolution models and non-linear dynamical systems theory.
Dissipative Structure and Weak Turbulence provides an understanding of the emergence and evolution of structures in macroscopic systems. This book discusses the emergence of dissipative structures. Organized into 10 chapters, this book begins with an overview of the stability of a fluid layer with potentially unstable density stratification in the field of gravity. This text then explains the theoretical description of the dynamics of a given system at a formal level. Other chapters consider several examples of how such simplified models can be derived, complicating the picture progressively to account for other phenomena. This book discusses as well the theory and experiments on plain Rayleigh–Bénard convection by setting first the theoretical frame and deriving the analytical solution of the marginal stability problem. The final chapter deals with building a bridge between chaos as studied in weakly confined systems and more advanced turbulence in the most conventional sense. This book is a valuable resource for physicists.
This book is a monograph on chaos in dissipative systems written for those working in the physical sciences. Emphasis is on symbolic description of the dynamics and various characteristics of the attractors, and written from the view-point of practical applications without going into formal mathematical rigour. The author used elementary mathematics and calculus, and relied on physical intuition whenever possible. Substantial attention is paid to numerical techniques in the study of chaos. Part of the book is based on the publications of Chinese researchers, including those of the author's collaborators.