Download Free Chaos In Communications Book in PDF and EPUB Free Download. You can read online Chaos In Communications and write the review.

One of the first books in this area, this text focuses on important aspects of the system operation, analysis and performance evaluation of selected chaos-based digital communications systems – a hot topic in communications and signal processing.
This book provides a summary of the research conducted at UCLA, Stanford University, and UCSD over the last ?ve years in the area of nonlinear dyn- ics and chaos as applied to digital communications. At ?rst blush, the term “chaotic communications” seems like an oxymoron; how could something as precise and deterministic as digital communications be chaotic? But as this book will demonstrate, the application of chaos and nonlinear dynamicstocommunicationsprovidesmanypromisingnewdirectionsinareas of coding, nonlinear optical communications, and ultra-wideband commu- cations. The eleven chapters of the book summarize many of the promising new approaches that have been developed, and point the way to new research directions in this ?eld. Digital communications techniques have been continuously developed and re?ned for the past ?fty years to the point where today they form the heart of a multi-hundred billion dollar per year industry employing hundreds of thousands of people on a worldwide basis. There is a continuing need for transmission and reception of digital signals at higher and higher data rates. There are a variety of physical limits that place an upper limit on these data rates, and so the question naturally arises: are there alternative communi- tion techniques that can overcome some of these limitations? Most digital communications today is carried out using electronic devices that are essentially “linear,” and linear system theory has been used to c- tinually re?ne their performance. In many cases, inherently nonlinear devices are linearized in order to achieve a certain level of linear system performance.
Since the 1970's, there has been a great deal of research effort spent on studying chaotic systems and the properties of the chaotic signals generated. Characterized by their wideband, impulse-like autocorrelation and low cross-correlation properties, chaotic signals are useful spread-spectrum signals for carrying digital information. Spectrum spreading has become one of the most popular modulation techniques for high-speed wireless communications. It makes use of signals of very wide bandwidth to carry information at relatively low data rates, and possesses advantages such as low probability of interception, resistance to jamming, multiple-access capability and mitigation to multipath effect, which are particularly important in a wireless scenario. In addition to enjoying the aforementioned benefits, chaotic signals can be generated using simple circuitries, thus lowering the cost of transceivers. Early study of chaos-based communication systems was focused on a single-user case. In the past few years, more effort has been put on investigating systems with multiple-access capability, which is a key feature of spread-spectrum communication systems. Digital Communications with Chaos presents a detailed study of some multiple-access schemes used for chaos-based communications, and evaluates their performance. In addition, the effectiveness of the multiuser detection techniques, whose primary objective is to reduce interference between users and hence improve performance, is evaluated in the context of multiple-access digital communication systems. Hot research topic Describes communication technologies for the future Authors among the pioneers researching in chaos-based communications
Controlling Chaos achieves three goals: the suppression, synchronisation and generation of chaos, each of which is the focus of a separate part of the book. The text deals with the well-known Lorenz, Rössler and Hénon attractors and the Chua circuit and with less celebrated novel systems. Modelling of chaos is accomplished using difference equations and ordinary and time-delayed differential equations. The methods directed at controlling chaos benefit from the influence of advanced nonlinear control theory: inverse optimal control is used for stabilization; exact linearization for synchronization; and impulsive control for chaotification. Notably, a fusion of chaos and fuzzy systems theories is employed. Time-delayed systems are also studied. The results presented are general for a broad class of chaotic systems. This monograph is self-contained with introductory material providing a review of the history of chaos control and the necessary mathematical preliminaries for working with dynamical systems.
Over the past few decades, there has been numerous research studies conducted involving the synchronization of dynamical systems with several theoretical studies and laboratory experimentations demonstrating the pivotal role for this phenomenon in secure communications. Chaos Synchronization and Cryptography for Secure Communications: Applications for Encryption explores the combination of ordinary and time delayed systems and their applications in cryptographic encoding. This innovative publication presents a critical mass of the most sought after research, providing relevant theoretical frameworks and the latest empirical research findings in this area of study.
The concept of transmitting information from one chaotic system to another derives from the observation of the synchronization of two chaotic systems. Having developed two chaotic systems that can be synchronized, scientists can modulate on one phase signal the information to be transmitted, and subtract (demodulate) the information from the corres
One of the first books in this area, this text focuses on important aspects of the system operation, analysis and performance evaluation of selected chaos-based digital communications systems – a hot topic in communications and signal processing.
Do you ever wonder why people aren't getting your message? You email, tweet, hang signs, create video announcements, send newsletters and boost your posts ... and the response isn't what you want. Is anyone even listening? What if you could cut through the chaos and the noise and find the direct route to your audience? It's easier than you think. Less Chaos. Less Noise. delivers proven "now" strategies for church communications--practical solutions and best-practice principles that build trust instead of walls. > Quickly establish your expertise through simple techniques you can use now for easy, early success. > Rise above the frenzy of overwhelming demands and learn a framework to lead internal change towards a clear and unified strategy. > Overcome communications barriers with your members and your community by learning to connect with hearts and minds, rather than broadcast to the masses. > Avoid the frustration of multi-audience messaging by identifying key channels for each group and learning the language that matters to them. > Bust through the limits of a small budget with free strategies that are essential for effective communications.
Chaotic Signals in Digital Communications combines fundamental background knowledge with state-of-the-art methods for using chaotic signals and systems in digital communications. The book builds a bridge between theoretical works and practical implementation to help researchers attain consistent performance in realistic environments. It shows the possible shortcomings of the chaos-based communication systems proposed in the literature, particularly when they are subjected to non-ideal conditions. It also presents a toolbox of techniques for researchers working to actually implement such systems. A Combination of Tutorials and In-Depth, Cutting-Edge Research Featuring contributions by active leading researchers, the book begins with an introduction to communication theory, dynamical systems, and chaotic communications suitable for those new to the field. This lays a solid foundation for the more applied chapters that follow. A Toolbox of Techniques—Including New Ways to Tackle Channel Imperfections The book covers typical chaos communication methods, namely chaotic masking, chaotic modulation, chaotic shift key, and symbolic message bearing, as well as bidirectional communication and secure communication. It also presents novel methodologies to deal with communication channel imperfections. These tackle band-limited channel chaos communication, radio channels with fading, and the resistance of a special chaotic signal to multipath propagations. In addition, the book addresses topics related to engineering applications, such as optical communications, chaotic matched filters and circuit implementations, and microwave frequency-modulated differential chaos shift keying (FM-DCSK) systems. Insights for Both Theoretical and Experimental Researchers Combining theory and practice, this book offers a unique perspective on chaotic communication in the context of non-ideal conditions. Written for theoretical and experimental researchers, it tackles the practical issues faced in implementing chaos-based signals and systems in digital communications applications.