Download Free Chain Mobility And Progress In Medicine Pharmaceuticals And Polymer Science And Technology Book in PDF and EPUB Free Download. You can read online Chain Mobility And Progress In Medicine Pharmaceuticals And Polymer Science And Technology and write the review.

Chain Mobility and Progress in Medicine, Pharmaceuticals, and Polymer Science and Technology covers the core fundamentals and applications of chain movement, chain mobility, segmental mobility, segmental dynamics, and chain orientation in polymer science, medicine, pharmaceuticals, and other disciplines. The book starts by defining principal terms, then looks at the work of Pierre-Gilles de Gennes and his 1991 Nobel Prize in Physics for his work on polymer-chain motion. From there the book discusses the different mechanisms of chain motion of macromolecular substances, the conditions under which chains move, and the effects of these movements on properties of materials, such as chain alignment, chain orientation, creation of free volume, dimensional stability, and more. The final chapters provide insight on analytical methods of chain movement, chain movement phenomena in different polymers, and various fields of application. All concepts, findings, and applications are discussed in easy-to-understand language stripped of disciplinary slang, making the book accessible to researchers and practitioners across a variety of scientific fields.
Handbook of Fillers, Fifth Edition discusses the rapidly advancing field of fillers, the substances added to plastics and composites that add value by improving and modifying the properties of materials and reducing costs. This new edition is an essential reference for engineers and scientists using fillers in a range of materials, including plastics, rubber, adhesives, and paper. Designed to be a comprehensive reference for both experienced practitioners and those new to the field, it covers available fillers and their properties, their effect on filled materials, their rheology and flammability, recycling considerations, and their use in practical applications. The book offers a direct comparison of general-purpose fillers (micron-size fillers) and nanofillers. The first section covers the grades of fillers available in the world market, dividing them into eight groups and analyzing their properties, applications, and sources. The second section discusses the effects of filler incorporation with ten chapters covering the mechanical properties of compounded materials, the effect of the filler on the material rheology, the morphology of the filled system, the material durability, flammability and recycling, the structure of interphase, chemical interphase, chemical interactions, interaction with and effect on other additive, fillers use in material compounds, and the analytical methods of testing fillers and filled materials. The final section is devoted to the application of fillers on an industrial scale. Filler transportation, storage, processing, and equipment used for these purposes are discussed, as are quality control of fillers, formulation with fillers, different processing methods, and health and safety issues. - Synthesizes the literature on fillers, covering their properties, effects on filled materials, rheology, flammability, and more - Provides up-to-date, applicable information on the use of fillers in plastics, rubber, adhesives, and paper - Presents comprehensive coverage on the effect of fillers on materials, including their mechanical properties, their effects on material rheology, the morphology of the filled system, material durability, and more - Includes essential guidance on the industrial scale use of fillers and their transportation, storage, processing, equipment, quality control, and health and safety considerations
Polymers are used in everything from nylon stockings to commercial aircraft to artificial heart valves, and they have a key role in addressing international competitiveness and other national issues. Polymer Science and Engineering explores the universe of polymers, describing their properties and wide-ranging potential, and presents the state of the science, with a hard look at downward trends in research support. Leading experts offer findings, recommendations, and research directions. Lively vignettes provide snapshots of polymers in everyday applications. The volume includes an overview of the use of polymers in such fields as medicine and biotechnology, information and communication, housing and construction, energy and transportation, national defense, and environmental protection. The committee looks at the various classes of polymersâ€"plastics, fibers, composites, and other materials, as well as polymers used as membranes and coatingsâ€"and how their composition and specific methods of processing result in unparalleled usefulness. The reader can also learn the science behind the technology, including efforts to model polymer synthesis after nature's methods, and breakthroughs in characterizing polymer properties needed for twenty-first-century applications. This informative volume will be important to chemists, engineers, materials scientists, researchers, industrialists, and policymakers interested in the role of polymers, as well as to science and engineering educators and students.
The use of polymers in medical devices is growing at a steady rate. These materials are generally relatively cheap and versatile, qualities required in many bulk applications. In more specialised medical devices, polymeric components have been developed to meet challenging property and performance requirements. This review describes the process of developing polymeric products for medical applications from design requirements through to specific examples of medical devices and packaging. An additional indexed section containing several hundred abstracts from the Rapra Polymer Library database gives useful references for further reading.
Annotation The review focuses on the use of pharmaceutical polymer for controlled drug delivery applications. Examples of pharmaceutical polymers and the principles of controlled drug delivery are outlined and applications of polymers for controlled drug delivery are described. The field of controlled drug delivery is vast therefore this review aims to provide an overview of the applications of pharmaceutical polymers. The review is accompanied by approximately 250 abstracts taken from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject.
This book presents the reader with a story-based narrative of discovery and development of radiation-induced graft polymerization. The report presented here accomplishes this by relating the inspiring account of research and development based on long-term collaboration among a professor, an engineer, and an entrepreneur. Their goal, ultimately successful, was to come up with a method for grafting functional polymer chains onto existing trunk polymers. The desired outcome was to produce feasible forms for practical use as adsorbents such as porous hollow-fiber membranes, porous sheets, nonwoven fabrics, and fibers. Adsorbents that specifically and efficiently bind to target ions and molecules are essential for capturing uranium species in seawater and antibody drugs in biological fluids and for removing metal ions from ultrapure water and radioactive cesium ions from contaminated water. This unique volume, with its clearly written text and many illustrative figures and diagrams, demonstrates the advantages of the high-adsorption capacity and rate and the easy handling of new polymeric adsorbents over conventional adsorbents. The dynamic behavior of graft chains as described here is certain to appeal especially to chemists, physicists, and material scientists as well as to other readers with an interest in this valuable subject.
This first book on this important and emerging topic presents an overview of the very latest results obtained in single-chain polymer nanoparticles obtained by folding synthetic single polymer chains, painting a complete picture from synthesis via characterization to everyday applications. The initial chapters describe the synthetics methods as well as the molecular simulation of these nanoparticles, while subsequent chapters discuss the analytical techniques that are applied to characterize them, including size and structural characterization as well as scattering techniques. The final chapters are then devoted to the practical applications in nanomedicine, sensing, catalysis and several other uses, concluding with a look at the future for such nanoparticles. Essential reading for polymer and materials scientists, materials engineers, biochemists as well as environmental chemists.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
A complete overview of the different strategies for designing polymers for targeted gene therapy and drug delivery for researchers in polymer science, nanotechnology and pharmacy.
Your search for the perfect polymers textbook ends here - with Polymer Science and Technology. By incorporating an innovative approach and consolidating in one volume the fundamentals currently covered piecemeal in several books, this efficient text simplifies the learning of polymer science. The book is divided into three main sections: po