Download Free Ceramic Coatings For Nuclear Fuel Cladding To Enhance Accident Tolerance Book in PDF and EPUB Free Download. You can read online Ceramic Coatings For Nuclear Fuel Cladding To Enhance Accident Tolerance and write the review.

This research is focused on developing nuclear fuel claddings with ceramic coatings that can perform well during normal operation and can withstand transient conditions such as loss of coolant accident for longer durations than current cladding material and then provide longer coping times. This was done by creating TiAlN coatings using physical vapor deposition and optimizing the deposition parameters and multilayer architecture to achieve the best performance.Zirconium-based alloys are currently widely used as cladding materials due to their low neutron absorption cross-section, good mechanical properties and high melting point. However, waterside corrosion of these alloys cause zirconium oxide formation and hydrogen generation which leads to hydrogen pick up and hydride embrittlement. Moreover, hydrogen generation in case of accelerated corrosion at higher temperatures due to loss of active cooling can lead to hydrogen explosions such as observed in the Fukushima-Daiichi accident when hydrogen explosions in the reactor building worsened the accident conditions. This accident motivated research into Accident Tolerant Fuels (ATF), which are fuels that are more forgiving in case of a loss-of-coolant-accident (LOCA). This research is an innovative approach since it considers application of TiN and TiAlN ceramic coatings on ZIRLO substrate by cathodic arc physical vapor deposition (CA-PVD), which improve corrosion resistance without a major change in core design and contribute to the design safety.Cathodic arc physical vapor deposition was used since it provides flexibility in coating properties by adjustment of deposition parameters. A systematic study was performed to identify the optimum deposition parameters to achieve enhanced adhesion of nitride-based coatings on ZIRLO substrates and best corrosion performance. The developed coatings are subjected to scratch tests and long-term corrosion tests. First, the single-layer TiAlN and single-layer TiN coating deposition on ZIRLO sheets were characterized in detail with regards to their as-deposited coating properties (topography, uniformity, crystal structure, residual stresses), failure modes during scratch testing and oxide formation after corrosion testing. Second, a multilayer coating design architecture is investigated to achieve enhanced corrosion resistance. Then the 8-layer TiN/TiAlN coatings deposited on ZIRLO tubes were exposed to long-term corrosion testing. Throughout the study, the following parameters were optimized to provide best corrosion resistance: (i) substrate surface roughness, (ii) substrate surface preparation method, (iii) titanium bond coating layer thickness, (iv) total coating thickness, (v) cathode composition, (vi) substrate bias, (vii) nitrogen partial pressure and (viii) multilayer design architecture.Mechanical performance evaluation involved scratch testing and post-scratched sample failure mode characterization. The corrosion tests were performed at Westinghouse in autoclave in static pure water at 360C and 18.7 MPa up to 128 days in order to evaluate the normal operating condition performance of the coatings. Furthermore, supercritical water testing was performed in University of Michigan autoclave at in deaerated water at 542C and 24.5 MPa for 48 hours. Additionally, differential scanning calorimetry and thermogravimetric analysis were performed to test oxidation onset point in air atmosphere. Furthermore, high temperature air oxidation testing was performed in furnace in air atmosphere up to 800C. Weight gain analysis and characterizations (optical microscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, Raman spectroscopy) were performed to examine as-deposited coating properties and to evaluate coating performance after corrosion and mechanical testing.The results determined that 8-layer TiN/TiAlN coatings deposited with optimized parameters achieved good adhesion and substantially enhanced corrosion performance, which makes this approach promising for development of accident tolerant nuclear fuel cladding.
The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectives of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as well as the possibilities for enhanced fuel/clad system performance and longevity.
Accident Tolerant Materials for Light Water Reactor Fuels provides a description of what an accident tolerant fuel is and the benefits and detriments of each concept. The book begins with an introduction to nuclear power as a renewable energy source and the current materials being utilized in light water reactors. It then moves on to discuss the recent advancements being made in accident tolerant fuels, reviewing the specific materials, their fabrication and implementation, environmental resistance, irradiation behavior, and licensing requirements. The book concludes with a look to the future of new power generation technologies. It is written for scientists and engineers working in the nuclear power industry and is the first comprehensive work on this topic. Introduces the fundamental description of accident tolerant fuel, including fabrication and implementation Describes both the benefits and detriments of the various Accident Tolerant Fuel concepts Includes information on the process of materials selection with a discussion of how and why specific materials were chosen, as well as why others failed
This book combines the contributions of experts in the field to describe the behavior of various materials, micromechanisms involved during processing, and the optimization of cold-spray technology. It spans production, characterization, and applications including wear resistance, fatigue, life improvement, thermal barriers, crack repair, and biological applications. Cold spray is an innovative coating technology based on the kinetic energy gained by particles sprayed at very high pressures. While the technique was developed in the 1990s, industrial and scientific interest in this technology has grown vastly in the last ten years. Recently, many interesting applications have been associated with cold-sprayed coatings, including wear resistance, fatigue life improvement, thermal barriers, biological applications, and crack repair. However, many fundamental aspects require clarification and description.
Presents brief descriptions of 20 fuel-related safety criteria along with both the rationale for having such criteria and possible new design and operational issues which could have an effect on them.
Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field
This publication is the result of an IAEA technical meeting and reports on Member States' capabilities in modelling, predicting and improving their understanding of the behaviour of nuclear fuel under accident conditions. The main results and outcomes of a coordinated research project (CRP) on this topic are also presented.
Cementitious materials are an essential part in any radioactive waste disposal facility. Conditioning processes such as cementation are used to convert waste into a stable solid form that is insoluble and will prevent dispersion to the surrounding environment. It is incredibly important to understand the long-term behavior of these materials. This book summarises approaches and current practices in use of cementitious materials for nuclear waste immobilisation. It gives a unique description of the most important aspects of cements as nuclear waste forms: starting with a description of wastes, analyzing the cementitious systems used for immobilization and describing the technologies used, and ending with analysis of cementitious waste forms and their long term behavior in an envisaged disposal environment. Extensive research has been devoted to study the feasibility of using cement or cement based materials in immobilizing and solidifying different radioactive wastes. However, these research results are scattered. This work provides the reader with both the science and technology of the immobilization process, and the cementitious materials used to immobilize nuclear waste. It summarizes current knowledge in the field, and highlights important areas that need more investigation. The chapters include: Introduction, Portland cement, Alternative cements, Cement characterization and testing, Radioactive waste cementation, Waste cementation technology, Cementitious wasteform durability and performance assessment.
Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates Written by an expert in that particular area