Download Free Central And Peripheral Mechanism Of Colour Vision Book in PDF and EPUB Free Download. You can read online Central And Peripheral Mechanism Of Colour Vision and write the review.

Dr. Conway mapped the spatial and temporal structure of the cone inputs to single neurons in the primary visual cortex of the alert macaque. Color cells had receptive fields that were often Double-Opponent, an organization of spatial and chromatic opponency sufficient to form the basis for color constancy and spatial color contrast. Almost all color cells gave a bigger response to color when preceded by an opposite color, suggesting that these cells also encode temporal color contrast. In sum, color perception is likely subserved by a subset of specialized neurons in the primary visual cortex. These cells are distinct from those that likely underlie form and motion perception. Color cells establish three color axes sufficient to describe all colors; moreover these cells are capable of computing spatial and temporal color contrast - and probably contribute to color constancy computations - because the receptive fields of these cells show spatial and temporal chromatic opponency.
"To explain all nature is too difficult a task for anyone man or even for anyone age. Tis much better to do a little with certainty, and leave the rest for others that come after you, than to explain all things ... " Sir Isaac Newton (1642-1727) This book describes and discusses some new aspects of col or vision in primates which have emerged from a series of experiments conducted over the past 8 years both on single ganglion cells in monkey retina and on the visually evoked cortical potential in man: corresponding psychophysical mechanisms of human perception will be considered as well. An attempt will be made to better understand the basic mechanisms of color vision using a more comprehensive approach which takes into account new mechanisms found in single cells and relates them to those found valid for the entire visual system. The processing of color signals was followed up from the retina to the visual cortex and to the percepq.tal centers, as far as the available techniques permitted.
We perceive color everywhere and on everything that we encounter in daily life. Color science has progressed to the point where a great deal is known about the mechanics, evolution, and development of color vision, but less is known about the relation between color vision and psychology. However, color psychology is now a burgeoning, exciting area and this Handbook provides comprehensive coverage of emerging theory and research. Top scholars in the field provide rigorous overviews of work on color categorization, color symbolism and association, color preference, reciprocal relations between color perception and psychological functioning, and variations and deficiencies in color perception. The Handbook of Color Psychology seeks to facilitate cross-fertilization among researchers, both within and across disciplines and areas of research, and is an essential resource for anyone interested in color psychology in both theoretical and applied areas of study.
Thompson provides an accessible review of the current scientific and philosophical discussions of colour vision and is vital reading for all cognitive scientists and philosophers whose interests touch upon this central area.Colour fascinates all of us, and scientists and philosophers have sought to understand the true nature of colour vision for many years. In recent times, investigations into colour vision have been one of the success stories of cognitive science, for each discipline within the field - neuroscience, psychology, linguistics, computer science and artificial intelligence, and philosophy - has contributed significantly to our understanding of colour. Evan Thompson's book is a major contribution to this interdisciplinary project.Colour Vision provides an accessible review of the current scientific and philosophical discussions of colour vision. Thompson steers a course between the subjective and objective positions on colour, arguing for a relational account. This account develops a novel 'ecological' approach to colour vision in cognitive science and the philosophy of perception. It is vital reading for all cognitive scientists and philosophers whose interests touch upon this central area.
The present volume covers the physiology of the visual system beyond the optic nerve. It is a continuation of the two preceding parts on the photochemistry and the physiology of the eye, and forms a bridge from them to the fourth part on visual psychophysics. These fields have all developed as independent speciali ties and need integrating with each other. The processing of visual information in the brain cannot be understood without some knowledge of the preceding mechanisms in the photoreceptor organs. There are two fundamental reasons, ontogenetic and functional, why this is so: 1) the retina of the vertebrate eye has developed from a specialized part of the brain; 2) in processing their data the eyes follow physiological principles similar to the visual brain centres. Peripheral and central functions should also be discussed in context with their final synthesis in subjective experience, i. e. visual perception. Microphysiology and ultramicroscopy have brought new insights into the neuronal basis of vision. These investigations began in the periphery: HARTLINE'S pioneering experiments on single visual elements of Limulus in 1932 started a successful period of neuronal recordings which ascended from the retina to the highest centres in the visual brain. In the last two decades modern electron microscopic techniques and photochemical investigations of single photoreceptors further contributed to vision research.