Download Free Cellular Oxygen Sensing And The Regulation Of Hypoxia Inducible Gene Expression In Mammalian Cells Book in PDF and EPUB Free Download. You can read online Cellular Oxygen Sensing And The Regulation Of Hypoxia Inducible Gene Expression In Mammalian Cells and write the review.

The ability of cells to sense and respond to changes in oxygenation underlies a multitude of developmental, physiological, and pathological processes. This volume provides a comprehensive compendium of experimental approaches to the study of oxygen sensing in 48 chapters that are written by leaders in their fields.
Hypoxia remains a constant threat throughout life. It is for this reason that the International Hypoxia Society strives to maintain a near quarter century tradition of presenting a stimulating blend of clinical and basic science discussions. International experts from many fields have focused on the state-of-the-art discoveries in normal and pathophysiological responses to hypoxia. Topics in this volume include gene-environment interactions, a theme developed in both a clinical context regarding exercise and hypoxia, as well as in native populations living in high altitudes. Furthermore, experts in the field have combined topics such as skeletal muscle angiogenesis and hypoxia, high altitude pulmonary edema, new insights into the biology of the erythropoietin receptor, and the latest advances in cardiorespiratory control in hypoxia. This volume explores the fields of anatomy, cardiology, biological transport, and biomedical engineering among many others.
This book describes the methods of analysis and determination of oxidants and oxidative stress in biological systems. Reviews and protocols on select methods of analysis of ROS, RNS, oxygen, redox status, and oxidative stress in biological systems are described in detail. It is an essential resource for both novices and experts in the field of oxidant and oxidative stress biology.
Molecular oxygen deficiency leads to altered cellular metabolism and can dramatically reduce crop productivity. Nearly all crops are negatively affected by a lack of oxygen (hypoxia) due to adverse environmental conditions such as excessive rain and soil waterlogging. Extensive efforts to fully understand how plants sense oxygen deficiency and their ability to respond using different strategies are crucial to increase hypoxia tolerance. Progress in our understanding has been significant in recent years. This topic certainly deserves more attention from the academic community; therefore, we have compiled a series of articles reflecting the advancements made thus far.
Heat shock proteins are emerging as important molecules in the development of cancer and as key targets in cancer therapy. These proteins enhance the growth of cancer cells and protect tumors from treatments such as drugs or surgery. However, new drugs have recently been developed particularly those targeting heat shock protein 90. As heat shock protein 90 functions to stabilize many of the oncogenes and growth promoting proteins in cancer cells, such drugs have broad specificity in many types of cancer cell and offer the possibility of evading the development of resistance through point mutation or use of compensatory pathways. Heat shock proteins have a further property that makes them tempting targets in cancer immunotherapy. These proteins have the ability to induce an inflammatory response when released in tumors and to carry tumor antigens to antigen presenting cells. They have thus become important components of anticancer vaccines. Overall, heat shock proteins are important new targets in molecular cancer therapy and can be approached in a number of contrasting approaches to therapy.
Proceedings of the XIVth International Symposium on Arterial Chemoreception, held June 24-28, 1999, in Philadelphia, Pennsylvania. This volume, containing the proceedings of the fourteenth biannual ISAC meeting presents a new departure from their traditional focus on arterial chemoreceptors and their functions, in the expansion to include the study and discussion of oxygen sensing in other tissues and cells, and the genes involved. Bringing together scientists from cellular and systemic boundaries of physiology, working at the interface of cellular and molecular biology, this book, containing new physiological and biochemical perspectives.
Since the discovery of the first examples of 2-oxoglutarate-dependent oxygenase-catalysed reactions in the 1960s, a remarkably broad diversity of alternate reactions and substrates has been revealed, and extensive advances have been achieved in our understanding of the structures and catalytic mechanisms. These enzymes are important agrochemical targets and are being pursued as therapeutic targets for a wide range of diseases including cancer and anemia. This book provides a central source of information that summarizes the key features of the essential group of 2-oxoglutarate-dependent dioxygenases and related enzymes. Given the numerous recent advances and biomedical interest in the field, this book aims to unite the latest research for those already working in the field as well as to provide an introduction for those newly approaching the topic, and for those interested in translating the basic science into medicinal and agricultural benefits. The book begins with four broad chapters that highlight critical aspects, including an overview of possible catalytic reactions, structures and mechanisms. The following seventeen chapters focus on carefully selected topics, each written by leading experts in the area. Readers will find explanations of rapidly evolving research, from the chemistry of isopenicillin N synthase to the oxidation mechanism of 5-methylcytosine in DNA by ten-eleven-translocase oxygenases.
This book represents an updated review of the physiology of the carotid body chemoreceptors. It contains results in the topics at the frontiers of future developments in O2-sensing in chemoreceptor cells. Additionally, this volume provides data from studies carried out in other O2-sensing tissues including pulmonary vasculature and erythropoietin producing cells. It is a prime source of information and a guideline for arterial chemoreception researchers.
The molecular deprivation of oxygen is manifested by hypoxia, a deficiency of oxygen and anoxia, or the absence of oxygen supply to the tissues. This book entitled Hypoxia and Anoxia will cover a broad range of understanding on hypoxia and anoxia from molecular mechanisms to pathophysiology. Hypoxia and anoxia stimulate multiple systems through specific cell signal transduction pathways and regulate several transcriptional factors like HIF-1, REST to encode genes for VEGF, Epo, etc. This book will also highlight different types of hypoxia and anoxia along with their impact on apoptosis, cardiovascular pathophysiology, and glucose regulatory mechanisms. This book will be a ready reckoner to give a deep understanding of the oxygen-sensing environment in vivo for researchers, academicians, and clinicians throughout the world.