Download Free Cell Penetrating Peptides Book in PDF and EPUB Free Download. You can read online Cell Penetrating Peptides and write the review.

Divided into three parts this volume summarizes the most important areas of Cell-Penetrating Peptides (CPP) research . Part one briefly presents the historical background of CPP studies and the classifications of the available CPPs, and then summarizes the approaches for prediction of novel CPPs. Part two mainly describes the methods for studies of “naked” CPPs, that is, CPPs without conjugated cargos. Last but not least part three presents a representative and brief summary of functionality issues of CPPs, both in vitro and in vivo. As a volume in the highly successful Methods in Molecular Biology series, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Concise and easy-to-use, Cell-Penetrating Peptides: Methods and Protocols, Second Edition hopes to raise relevant questions for further development.
In this book, a summary and update of the most important areas of CPP research are presented, whilst raising relevant questions for further development. The CPP sequences are presented and discussed throughout the book. The methods for testing CPP mechanisms are discussed in detail. Various approaches for the testing of endocytotic pathways of CPP uptake are also described. Different CPP uptake experiments are compared since it is becoming clear that it is often best to apply several methods in a complementary manner in order to most comprehensively evaluate CPP uptake mechanisms due to the complexity of these processes. A brief summary of functionality issues of CPPs, both in vitro and in vivo are discussed. Therapeutic potential of CPPs and commercial developments are discussed. The monograph is written for researchers and students in the field.
This book is devoted to innovative medicine, comprising the proceedings of the Uehara Memorial Foundation Symposium 2014. It remains extremely rare for the findings of basic research to be developed into clinical applications, and it takes a long time for the process to be achieved. The task of advancing the development of basic research into clinical reality lies with translational science, yet the field seems to struggle to find a way to move forward. To create innovative medical technology, many steps need to be taken: development and analysis of optimal animal models of human diseases, elucidation of genomic and epidemiological data, and establishment of “proof of concept”. There is also considerable demand for progress in drug research, new surgical procedures, and new clinical devices and equipment. While the original research target may be rare diseases, it is also important to apply those findings more broadly to common diseases. The book covers a wide range of topics and is organized into three complementary parts. The first part is basic research for innovative medicine, the second is translational research for innovative medicine, and the third is new technology for innovative medicine. This book helps to understand innovative medicine and to make progress in its realization.
DNA delivery into cells is a rapidly developing area in gene therapy and biotechnology. Moreover, it is a powerful research tool to determine gene structure, regulation, and function. Viral methods of DNA delivery are well-characterized and efficient, but little is known about the toxicity and immunogenecity of viral vectors. As a result, non-viral, transfection methods of DNA delivery are of increasing interest. Synthetic DNA Delivery Systems is a comprehensive and current resource on DNA transfection. The use of histidine-rich peptides and polypeptides as DNA delivery systems and self-assembled delivery systems based on cationic lipids and polymers are discussed. Targeted delivery to organelles, tumor cells and dendritic cells comprise an important topic.
Provides timely, comprehensive coverage of in vivo chemical reactions within live animals This handbook summarizes the interdisciplinary expertise of both chemists and biologists performing in vivo chemical reactions within live animals. By comparing and contrasting currently available chemical and biological techniques, it serves not just as a collection of the pioneering work done in animal-based studies, but also as a technical guide to help readers decide which tools are suitable and best for their experimental needs. The Handbook of In Vivo Chemistry in Mice: From Lab to Living System introduces readers to general information about live animal experiments and detection methods commonly used for these animal models. It focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release. Topics include: currently available mouse models; biocompatible fluorophores; radionuclides for radiodiagnosis/radiotherapy; live animal imaging techniques such as positron emission tomography (PET) imaging; magnetic resonance imaging (MRI); ultrasound imaging; hybrid imaging; biocompatible chemical reactions; ligand-directed nucleophilic substitution chemistry; biorthogonal prodrug release strategies; and various selective targeting strategies for live animals. -Completely covers current techniques of in vivo chemistry performed in live animals -Describes general information about commonly used live animal experiments and detection methods -Focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release -Places emphasis on material properties required for the development of appropriate compounds to be used for imaging and therapeutic purposes in preclinical applications Handbook of In Vivo Chemistry in Mice: From Lab to Living System will be of great interest to pharmaceutical chemists, life scientists, and organic chemists. It will also appeal to those working in the pharmaceutical and biotechnology industries.
Advances in biotechnology have provided scientists with an increasing number of biopharmaceuticals such as novel peptide and protein drugs as well as nucleic acid based drugs for gene therapy. However, successful delivery of these biopharmaceuticals is a major challenge because their molecular properties lead to poor physical and chemical stability in the body and limited membrane permeability. Therefore researchers are developing a range of new delivery technologies and materials to enable these new drugs to be delivered intact to their target sites. Delivery Technologies for Biopharmaceuticals describes strategies to overcome the main barriers for successful delivery of therapeutic peptides, proteins, and nucleic acid-based drugs or vaccines related to the site of administration and the target site. Many of the approaches described are reported in formulations in current clinical trials as well as in marketed products. Contents include: challenges in delivery of biopharmaceuticals novel formulation approaches for peptide and protein injectables non-viral chemical vectors and viral technology for delivery of nucleic acid based drugs immune response, adjuvants and delivery systems for vaccines several examples of delivery systems for different biopharmaceuticals a critical assessment of delivery technologies for biopharmaceuticals Delivery Technologies for Biopharmaceuticals is an essential single-volume introduction to the technologies used by researchers to ensure efficient delivery of this exciting new class of drugs. It will be of value to researchers and students working in drug delivery, formulation, biopharmaceuticals, medicinal chemistry, and new materials development.
Therapeutic Proteins and Peptides, Volume 112 in an ongoing series promotes further research in the discovery of new therapeutic targets that can be affected by therapeutic proteins and peptides to cure or manage symptoms of human diseases, with this release focusing on the Rational Design of Stable Liquid Formulations of Biopharmaceuticals, Formulation strategies for peptides, proteins and antibodies using nanotechnology, the Solution structural dynamics of therapeutic peptides and their adsorption on plasmonic nanoparticles, Enzymatic approaches of protein-polymer conjugation, Chimeric small antibody fragments as a strategy to deliver therapeutic payloads, Smart cell-penetrating peptide-based techniques for cytoplasmic delivery of therapeutic macromolecules, and more. - Describes advances in the discovery and application of therapeutic proteins/peptides which allow better targeting to the site of treatment and cause fewer adverse effects when compared to chemical compounds used for disease treatment - Targeted to a very wide audience of specialists, researchers and students - Written by well-renown authorities in their field - Includes a number of high quality illustrations, figures and tables
This book presents an overview of antimicrobial peptides (AMPs), their mechanisms of antimicrobial action, other activities, and various problems that must still be overcome regarding their clinical application. Divided into four major parts, the book begins with a general overview of AMPs (Part I), and subsequently discusses the various mechanisms of antimicrobial action and methods for researching them (Part 2). It then addresses a range of activities other than antimicrobial action, such as cell penetration, antisepsis, anticancer, and immunomodulatory activities (Part 3), and explores the prospects of clinical application from various standpoints such as the selective toxicity, design, and discovery of AMPs (Part 4). A huge number of AMPs have been discovered in plants, insects, and vertebrates including humans, and constitute host defense systems against invading pathogenic microorganisms. Consequently, many attempts have been made to utilize AMPs as antibiotics. AMPs could help to solve the urgent problem of drug-resistant bacteria, and are also promising with regard to sepsis and cancer therapy. Gathering a wealth of information, this book will be a bible for all those seeking to develop antibiotics, anti-sepsis, or anticancer agents based on AMPs.
Provides unique insider insight into the current drug development process, and what it takes to achieve success In this fourth volume in the series, inventors and primary developers of drugs that made it to the market continue telling the story of the drugs? discovery and development, and discuss the sometimes twisted route from the first drug candidate molecule to the final marketed one. Beginning with a general section addressing overarching topics for drug discovery, the book offers seven chapters that feature selected case studies describing recently introduced drugs or drug classes. These include small molecule drugs as well as biopharmaceuticals and range across different therapeutic fields. Together, they provide a representative cross-section of the present-day drug development effort. Successful Drug Discovery: Volume 4 covers trends in peptide-based drug discovery and the physicochemical properties of recently approved oral drugs. The section on drug class studies looks at antibody-drug conjugates and the discovery, evolution, and therapeutic potential of dopamine partial agonists. Featured case studies examine the discovery of Etelcalcetide for the treatment of secondary hyper-parathyroidism in patients with chronic kidney disease; the development of Lenvatinib Mesylate; the discovery and development of Venetoclax; and more. -Focuses on recently introduced drugs that have not been featured in any textbooks or general references, including Ocrelizumab, a new generation of anti-CD-20 mAb for the treatment of multiple sclerosis, and Venetoclax, a selective antagonist of BCL-2 -Features personal experiences of successful drug developers from industry and academia -Endorsed and supported by the International Union of Pure and Applied Chemistry (IUPAC) Successful Drug Discovery: Volume 4 provides a fascinating and informative look into the process of drug discovery and would be a great reference for those in the pharmaceutical industry, organic and pharmaceutical chemists, and lecturers in pharmacy.
Including case studies of macrocyclic marketed drugs and macrocycles in drug development, this book helps medicinal chemists deal with the synthetic and conceptual challenges of macrocycles in drug discovery efforts. Provides needed background to build a program in macrocycle drug discovery –design criteria, macrocycle profiles, applications, and limitations Features chapters contributed from leading international figures involved in macrocyclic drug discovery efforts Covers design criteria, typical profile of current macrocycles, applications, and limitations