Download Free Cell Locomotion In Vitro Book in PDF and EPUB Free Download. You can read online Cell Locomotion In Vitro and write the review.

It is ten years since the first symposium on cell locomotion was held (Locomotion of Tissue Cells, Ciba Foundation Symposium 14, 1972). That meeting was chaired by Michael Abercrombie, and in his intro ductory remarks he commented on the extent to which the importance of cell locomotion, apart from that seen in leucocytes, had been under estimated. Much has been done to correct that neglect during the suc ceeding decade, and we have learned more about the underlying mechanisms of cell locomotion and about the factors which may influence it. Abercrombie was himself a major contributor to this field of research (as a glance at the lists of references in this book will confirm), and his ideas inspired the work of many other investigators. As in all branches of science, progress in the study of celliocomo tion has depended on the availability of appropriate experimental techniques. Of these, tissue culture has made the greatest contribution, in conjunction with a variety of procedures using either the light or the electron microscope. We have, therefore, attempted, in chapters 2 and 3, to provide explanations of the techniques which have been parti cularly fruitful, but only in sufficient detail to permit the reader to is not a laboratory manual.
Edited and authored by a wealth of international experts in neuroscience and related disciplines, this key new resource aims to offer medical students and graduate researchers around the world a comprehensive introduction and overview of modern neuroscience. Neuroscience research is certain to prove a vital element in combating mental illness in its various incarnations, a strategic battleground in the future of medicine, as the prevalence of mental disorders is becoming better understood each year. Hundreds of millions of people worldwide are affected by mental, behavioral, neurological and substance use disorders. The World Health Organization estimated in 2002 that 154 million people globally suffer from depression and 25 million people from schizophrenia; 91 million people are affected by alcohol use disorders and 15 million by drug use disorders. A more recent WHO report shows that 50 million people suffer from epilepsy and 24 million from Alzheimer’s and other dementias. Because neuroscience takes the etiology of disease—the complex interplay between biological, psychological, and sociocultural factors—as its object of inquiry, it is increasingly valuable in understanding an array of medical conditions. A recent report by the United States’ Surgeon General cites several such diseases: schizophrenia, bipolar disorder, early-onset depression, autism, attention deficit/ hyperactivity disorder, anorexia nervosa, and panic disorder, among many others. Not only is this volume a boon to those wishing to understand the future of neuroscience, it also aims to encourage the initiation of neuroscience programs in developing countries, featuring as it does an appendix full of advice on how to develop such programs. With broad coverage of both basic science and clinical issues, comprising around 150 chapters from a diversity of international authors and including complementary video components, Neuroscience in the 21st Century in its second edition serves as a comprehensive resource to students and researchers alike.
The Mammalian Spinal Cord provides a comprehensive account of the anatomy and histology of the spinal cord. The text covers the cytoarchitecture, chemoarchitecture, motor neuron distribution, long tracts, autonomic outflow, and gene expression in the spinal cord. A feature of the book is the inclusion of segment-by-segment atlases of the spinal cords of rat, mouse, newborn mouse, marmoset, rhesus monkey, and human. This book is an essential reference for researchers studying the spinal cord.
"Yet another cell and molecular biology book? At the very least, you would think that if I was going to write a textbook, I should write one in an area that really needs one instead of a subject that already has multiple excellent and definitive books. So, why write this book, then? First, it's a course that I have enjoyed teaching for many years, so I am very familiar with what a student really needs to take away from this class within the time constraints of a semester. Second, because it is a course that many students take, there is a greater opportunity to make an impact on more students' pocketbooks than if I were to start off writing a book for a highly specialized upper- level course. And finally, it was fun to research and write, and can be revised easily for inclusion as part of our next textbook, High School Biology."--Open Textbook Library.
Some years ago a book reviewer, perhaps with Freudian honesty, remarked that the book in question 'filled a much needed gap in the literature'. That phrase has haunted the writing of this gap-filler and this preface may be considered an apologia. For a number of years I have found myself teaching various groups of students about cell locomotion and cell behaviour: sometimes science students specializing in cell or molecular biology, sometimes immunologists or pathologists who only wanted a broad background introduction. Those students who were enthusiastic, or who wished to appear so, asked for a general background text (to explain my lectures perhaps), and that is what I hope this book will provide. With luck, other scientists who have only a peripheral interest in cell movement will also find this a useful overview. The more proximate origin of the book was a special 'option' subject which I taught for two years to our Senior Honours Cell Biology students in Glasgow.
A discussion of the neural crest and neural crest cells, dealing with their discovery, their embryological and evolutionary origins, their cellular derivatives - in both agnathan and jawed vertebrates or gnathostomes - and the broad topics of migration and differentiation in normal development. The book also considers what goes wrong when development is misdirected by mutations, or by exposure of embryos to exogenous agents such as drugs, alcohol, or excess vitamin A, and includes discussions of tumours and syndromes and birth defects involving neural crest cells.
This book, like other monographs of the Cellular Organelles series, is not a comprehensive review, but an introduction to the study of cytoskeleton. Accordingly, we describe only the main facts and concepts related to cyto skeleton. Needless to say, selection and interpretation was influenced by the personal interests and opinions of the authors, although we attempted to be as fair as possible. We wished to familiarize the reader not only with well established facts, but with current unsolved problems. Therefore, the words "possibly," "maybe," "not known," and "not clear" are much more frequent in this text than in many others. In accordance with the style of the series, relatively short lists of addi tional readings are given at the end of each chapter; these lists contain mostly the recent reviews and a few original papers describing certain phenomena in detail. Few references are cited in the text; these citations are given to help the reader find the source of certain new data and theories, which are not discussed at length in the reviews. In contrast, many well-established facts and widely known theories are not cited.