Download Free Cell Free Nucleic Acids Book in PDF and EPUB Free Download. You can read online Cell Free Nucleic Acids and write the review.

The deficits of mammography and the potential of noninvasive diagnostic testing using circulating miRNA profiles are presented in our first review article. Exosomes are important in the transfer of genetic information. The current knowledge on exosome-associated DNAs and on vesicle-associated DNAs and their role in pregnancy-related complications is presented in the next article. The major obstacle is the lack of a standardized technique for the isolation and measurement of exosomes. One review has summarized the latest results on cell-free nucleic acids in inflammatory bowel disease (IBD). Despite the extensive research, the etiology and exact pathogenesis are still unclear, although similarity to the cell-free ribonucleic acids (cfRNAs) observed in other autoimmune diseases seems to be relevant in IBD. Liquid biopsy is a useful tool for the differentiation of leiomyomas and sarcomas in the corpus uteri. One manuscript has collected the most important knowledge of mesenchymal uterine tumors and shows the benefits of noninvasive sampling. Microchimerism has also recently become a hot topic. It is discussed in the context of various forms of transplantation and transplantation-related advanced therapies, the available cell-free nucleic acid (cfNA) markers, and the detection platforms that have been introduced. Ovarian cancer is one of the leading serious malignancies among women, with a high incidence of mortality; the introduction of new noninvasive diagnostic markers could help in its early detection and treatment monitoring. Epigenetic regulation is very important during the development of diseases and drug resistance. Methylation changes are important signs during ovarian cancer development, and it seems that the CDH1 gene is a potential candidate for being a noninvasive biomarker in the diagnosis of ovarian cancer. Preeclampsia is a mysterious disease—despite intensive research, the exact details of its development are unknown. It seems that cell-free nucleic acids could serve as biomarkers for the early detection of this disease. Three research papers deal with the prenatal application of cfDNA. Copy number variants (CNVs) are important subjects for the study of human genome variations, as CNVs can contribute to population diversity and human genetic diseases. These are useful in NIPT as a source of population specific data. The reliability of NIPT depends on the accurate estimation of fetal fraction. Improvement in the success rate of in vitro fertilization (IVF) and embryo transfer (ET) is an important goal. The measurement of embryo-specific small noncoding RNAs in culture media could improve the efficiency of ET.
The functional properties of any molecule are directly related to, and affected by, its structure. This is especially true for DNA, the molecular that carries the code for all life on earth. The third edition of Understanding DNA has been entirely revised and updated, and expanded to cover new advances in our understanding. It explains, step by step, how DNA forms specific structures, the nature of these structures and how they fundamentally affect the biological processes of transcription and replication. Written in a clear, concise and lively fashion, Understanding DNA is essential reading for all molecular biology, biochemistry and genetics students, to newcomers to the field from other areas such as chemistry or physics, and even for seasoned researchers, who really want to understand DNA. - Describes the basic units of DNA and how these form the double helix, and the various types of DNA double helix - Outlines the methods used to study DNA structure - Contains over 130 illustrations, some in full color, as well as exercises and further readings to stimulate student comprehension
The deficits of mammograp ...
The field of Molecular Diagnostics is rapidly evolving and molecular characterization of neoplasms is becoming an increasingly important part of the pathologic work up and diagnosis of many tumor types. This work provides a high-yield reference book that compiles critical information related to molecular biomarkers for various solid tumor and hematologic malignancy subtypes. It is succinct yet comprehensive enough to be suitable for fellows in training and medical professionals with an interest in molecular pathology and biomarkers. The book covers many aspects of molecular diagnostics, from techniques to applications and comprehensive summaries of the current molecular biomarkers of critical importance in solid and liquid tumors. Attention is also specifi cally devoted to bioinformatics and next generation sequencing, as well as pre-analytical issues that must be considered for accurate interpretation of molecular results in the context of overall patient care. This text focuses on clinical utility and validity and serves as an “owner’s manual” in Genomic Diagnostics for the practicing pathologist, pathology fellows and residents and other health care providers. Physicians will find this book invaluable as a quick reference for current molecular testing modalities and guidelines, tumor board preparation, deciding which test to order and interpreting genomic laboratory results. In addition, it is an accessible for trainees as a board review preparation reference.
Reliable diagnosis is the cornerstone, starting point, and prerequisite of successful treatment. Therefore, development of innovative diagnostic technologies represents a hot topic in medical research. Liquid biopsy is a novel, minimally invasive laboratory evaluation concept for diagnostic, prognostic, and predictive testing, as well as dynamic monitoring of treatment or disease course. To achieve these goals, a multitude of specific, targeted tests can be performed to detect free nucleic acids, exosomes, microRNAs, tumor-educated platelets, and whole cells of tumor or fetal origin in different biological fluids, including blood, urine, cerebrospinal fluid, and others. Although tissue biopsy has long been considered the gold standard of diagnostics, especially regarding malignant tumors, liquid biopsy has the advantages of a non-invasive approach and thus low risk of complications. It is technically feasible even in serious general status or if tumors or metastases are not easily accessible using conventional tissue biopsy. The testing is fast, exact, and can be repeated to ensure real-time follow-up. In contrast to classic tumor markers, liquid biopsy is distinguished by high specificity at genomic, proteomic, and cellular levels. It is expected to equal and exceed the diagnostic value of tissue biopsy. The field of liquid biopsies is developing rapidly regarding the selection of targets, technological improvements, and quality assessment. This book, written by a global team of recognized scientists, comprises state-of-the-art reviews on the current knowledge and advances in the technologies and software for liquid biopsy. Examples of practical application of liquid biopsy to evaluate thyroid cancer, multiple myeloma, etc. are discussed as well. The book is intended to serve as a reference for scientists and clinicians interested in the development and practical implementation of liquid biopsy.
This book describes the most important techniques used for studying cfDNA in the different samples; serum, plasma, urine. Chapters detail methods on liquid biopsy for cancer disease, methods in cancer, epigenetic modifications, fetal and pediatric diseases, physical activity, and urinary cell free DNA. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Cell-Free DNA as Diagnostic Markers: Methods and Protocols aims to ensure successful results in the further study of this vital field.
This volume provides insight into the pivotal roles of stem cells, exosomes and other microvesicles in biofunction and molecular mechanisms and their therapeutic potential in translational nanomedicine. It further highlights evidence from recent studies as to how stem cell derived exosomes and microRNAs may restore and maintain tissue homeostasis, enable cells to recover critical cellular functions and begin repair regeneration. These early studies in animal models of aging also show evidence of improved immune, cardiovascular and cognitive functions as well as improved health span and life span. The use of exosomes from body fluids to define specific biomarkers for various tumors may also clear the path to patient-targeted treatments by developing exosome-derived microRNA based cancer therapeutics. It is essential reading for graduate students, research fellow and biomedical researchers in academia or the pharmaceutical or biotech industries.
Discover how metal-enhanced fluorescence is changing traditional concepts of fluorescence This book collects and analyzes all the current trends, opinions, and emerging hot topics in the field of metal-enhanced fluorescence (MEF). Readers learn how this emerging technology enhances the utility of current fluorescence-based approaches. For example, MEF can be used to better detect and track specific molecules that may be present in very low quantities in either clinical samples or biological systems. Author Chris Geddes, a noted pioneer in the field, not only explains the fundamentals of metal-enhanced fluorescence, but also the significance of all the most recent findings and models in the field. Metal-enhanced fluorescence refers to the use of metal colloids and nanoscale metallic particles in fluorescence systems. It offers researchers the opportunity to modify the basic properties of fluorophores in both near- and far-field fluorescence formats. Benefits of metal-enhanced fluorescence compared to traditional fluorescence include: Increased efficiency of fluorescence emission Increased detection sensitivity Protect against fluorophore photobleaching Applicability to almost any molecule, including both intrinsic and extrinsic chromophores Following a discussion of the principles and fundamentals, the author examines the process and applications of metal-enhanced fluorescence. Throughout the book, references lead to the primary literature, facilitating in-depth investigations into particular topics. Guiding readers from the basics to state-of-the-technology applications, this book is recommended for all chemists, physicists, and biomedical engineers working in the field of fluorescence.
A FRESH EXAMINATION OF PRECISION MEDICINE'S INCREASINGLY PROMINENT ROLE IN THE FIELD OF ONCOLOGY Precision medicine takes into account each patient's specific characteristics and requirements to arrive at treatment plans that are optimized towards the best possible outcome. As the field of oncology continues to advance, this tailored approach is becoming more and more prevalent, channelling data on genomics, proteomics, metabolomics and other areas into new and innovative methods of practice. Precision Medicine in Oncology draws together the essential research driving the field forward, providing oncology clinicians and trainees alike with an illuminating overview of the technology and thinking behind the breakthroughs currently being made. Topics covered include: Biologically-guided radiation therapy Informatics for precision medicine Molecular imaging Biomarkers for treatment assessment Big data Nanoplatforms Casting a spotlight on this emerging knowledge base and its impact upon the management of tumors, Precision Medicine in Oncology opens up new possibilities and ways of working – not only for oncologists, but also for molecular biologists, radiologists, medical geneticists, and others.