Download Free Cell Cycle Mechanisms And Neuronal Cell Death Book in PDF and EPUB Free Download. You can read online Cell Cycle Mechanisms And Neuronal Cell Death and write the review.

This volume represents a valuable and readily reproducible collection of established and emerging techniques for neuronal cell death research. Conveniently divided into four parts, sections cover a series of techniques for the molecular, structural, functional and genomic characterization of dying neurons, a number of protocols that are of primary interest in neuropathology and in experimental neuropathology, a series of gene engineering techniques to obtain and manipulate neuronal stem cells and progenitors, to prepare HSV-1 vectors for the gene therapy, and to CNS transplantation of bone marrow stem cells, and finally, some very interesting protocols for the study of cell death in non-mammalian models. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Neuronal Cell Death: Methods and Protocols seeks to serve a large audience of scientists that are currently active in the field or are willing to enter such an exciting and still expanding area of neurobiology.
Cell-Cycle Mechanisms and Neuronal Cell Death examines the role of cell cycle activation in the molecular mechanisms leading to neuronal degeneration. Leading Authors discuss this topic in relation to the major neurological disorders, including Alzheimer’s disease, stroke and epilepsy. This book serves to gain new insights into the molecular determinants of neuronal death and to establish new targets for therapeutic intervention.
Contains papers from a July 1998 conference held at the Queens College Campus of the City University of New York. Papers are arranged in sections on mechanisms and general considerations, programmed (developmental) cell death, and cell death and pathological and clinical situations. Specific topics
Cell Cycle in the Central Nervous System overviews the changes in cell cycle as they relate to prenatal and post natal brain development, progression to neurological disease or tumor formation.Topics covered range from the cell cycle during the prenatal development of the mammalian central nervous system to future directions in postnatal neurogenesis through gene transfer, electrical stimulation, and stem cell introduction. Additional chapters examine the postnatal development of neurons and glia, the regulation of cell cycle in glia, and how that regulation may fail in pretumor conditions or following a nonneoplastic CNS response to injury. Highlights include treatments of the effects of deep brain stimulation on brain development and repair; the connection between the electrophysiological properties of neuroglia, cell cycle, and tumor progression; and the varied immunological responses and their regulation by cell cycle.
Intended for use by advanced undergraduate, graduate and medical students, this book presents a study of the unique biochemical and physiological properties of neurons, emphasising the molecular mechanisms that generate and regulate their activity.
A million cells in our bodies die every second--they commit suicide by activating a process called apoptosis or other forms of programmed cell death. These mechanisms are essential for survival of the body as a whole and play critical roles in various developmental processes, the immune system, and cancer. In this second edition of Douglas Green's essential book on cell death, Green retains the bottom-up approach of the first edition, starting with the enzymes that carry out the execution (caspases) and their cellular targets before examining the machinery that connects them to signals that cause cell death. He also describes the roles of cell death in development, neuronal selection, and the development of self-tolerance in the immune system, as well as how the body uses cell death to defend against cancer. The new edition is fully updated to cover the many recent advances in our understanding of the death machinery and signals that control cell death. These include the mechanisms regulating necroptosis, mitophagy, and newly identified processes, such as ferroptosis. The book will thus be of great interest to researchers actively working in the field, as well as biologists and undergraduates encountering the topic for the first time.
Cyclin Dependent Kinase 5 provides a comprehensive and up-to-date collection of reviews on the discovery, signaling mechanisms and functions of Cdk5, as well as the potential implication of Cdk5 in the treatment of neurodegenerative diseases. Since the identification of this unique member of the Cdk family, Cdk5 has emerged as one of the most important signal transduction mediators in the development, maintenance and fine-tuning of neuronal functions and networking. Further studies have revealed that Cdk5 is also associated with the regulation of neuronal survival during both developmental stages and in neurodegenerative diseases. These observations indicate that precise control of Cdk5 is essential for the regulation of neuronal survival. The pivotal role Cdk5 appears to play in both the regulation of neuronal survival and synaptic functions thus raises the interesting possibility that Cdk5 inhibitors may serve as therapeutic treatment for a number of neurodegenerative diseases.
Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics, and Immunotherapy, Second Edition, provides a comprehensive overview of the molecular methodologies in the neuro-oncology field. There have been profound changes in the landscape of approaches to brain tumor therapy since the first edition—mainly in the areas of molecular biology and molecular therapeutics, as well as in the maturation of immunotherapy approaches (e.g., vaccines). This updated edition has a new, primary focus on multidisciplinary molecular methods, and is broadened to include the latest cutting-edge molecular biology, therapeutics, immunobiology and immunotherapy approaches. As the first comprehensive book to address the molecular research into these concepts, users will find it to be an invaluable resource on the topics discussed. - Provides the most up-to-date information regarding conventional forms of cytotoxic chemotherapy, as well as the basic science and clinical application of molecular therapeutics for the treatment of brain tumors - Broadly appeals to anyone interested in neuro-oncology and the treatment of brain tumors - Features updated chapters on molecular biology, molecular therapeutics, maturation of immunotherapy approaches, and a focus on multidisciplinary molecular methods - Includes a new section on the basic science of immunology, as well as thorough updates on the use of vaccine technology and immunotherapy for the treatment of brain tumors
These volumes teach readers to think beyond apoptosis and describes all of the known processes that cells can undergo which result in cell death This two-volume source on how cells dies is the first, comprehensive collection to cover all of the known processes that cells undergo when they die. It is also the only one of its kind to compare these processes. It seeks to enlighten those in the field about these many processes and to stimulate their thinking at looking at these pathways when their research system does not show signs of activation of the classic apoptotic pathway. In addition, it links activities like the molecular biology of one process (eg. Necrosis) to another process (eg. apoptosis) and contrasts those that are close to each. Volume 1 of Apoptosis and Beyond: The Many Ways Cells Die begins with a general view of the cytoplasmic and nuclear features of apoptosis. It then goes on to offer chapters on targeting the cell death mechanism; microbial programmed cell death; autophagy; cell injury, adaptation, and necrosis; necroptosis; ferroptosis; anoikis; pyronecrosis; and more. Volume 2 covers such subjects as phenoptosis; pyroptosis; hematopoiesis and eryptosis; cyclophilin d-dependent necrosis; and the role of phospholipase in cell death. Covers all known processes that dying cells undergo Provides extensive coverage of a topic not fully covered before Offers chapters written by top researchers in the field Provides activities that link and contrast processes to each other Apoptosis and Beyond: The Many Ways Cells Die will appeal to students and researchers/clinicians in cell biology, molecular biology, oncology, and tumor biology.