Download Free Cell Cycle Inhibitors In Cancer Therapy Book in PDF and EPUB Free Download. You can read online Cell Cycle Inhibitors In Cancer Therapy and write the review.

This book is a state-of-the-art summary of the latest achievements in cell cycle control research with an outlook on the effect of these findings on cancer research. The chapters are written by internationally leading experts in the field. They provide an updated view on how the cell cycle is regulated in vivo, and about the involvement of cell cycle regulators in cancer.
Tyrosine Kinase Inhibitors as Sensitizing Agents for Chemotherapy, the fourth volume in the Cancer Sensitizing Agents for Chemotherapy Series, focuses on strategic combination therapies that involve a variety of tyrosine kinase inhibitors working together to overcome multi-drug resistance in cancer cells. The book discusses several tyrosine kinase inhibitors that have been used as sensitizing agents, such as EGFR, BCR-ABL, ALK and BRAF. In each chapter, readers will find comprehensive knowledge on the inhibitor and its action, including its biochemical, genetic, and molecular mechanisms' emphases. This book is a valuable source for oncologists, cancer researchers and those interested in applying new sensitizing agents to their research in clinical practice and in trials. - Summarizes the sensitizing role of some tyrosine kinase inhibitors in existing research - Brings recent findings in several cancer types, both experimental and clinically, with a particular emphases on underlying biochemical, genetic, and molecular mechanisms - Provides an updated and comprehensive knowledge regarding the field of combinational cancer treatment
Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.
A panel of leading academic and pharmaceutical investigators takes stock of the remarkable work that has been accomplished to date with proteasome inhibitors in cancer, and examines emerging therapeutic possibilities. The topics range from a discussion of the chemistry and cell biology of the proteasome and the rationale for proteasome inhibitors in cancer to a review of current clinical trials underway. The discussion of rationales for testing proteasome inhibitors in cancer models covers the role of the proteasome in NF-kB activation, the combining of conventional chemotherapy and radiation with proteasome inhibition, notably PS-341, new proteasome methods of inhibiting viral maturation, and the role of protesome inhibition in the treatment of AIDS. The authors also document the development of bortezomib (VelcadeTM) in Phase I clinical trials and in a multicentered Phase II clinical trials in patients with relapsed and refractory myeloma.
This book offers a comprehensive overview of recent developments in the field of breast cancer biology. It is a complete and descriptive reference on motioning pathways and new treatment options for the future transnational scientists and clinicians working on cancer research and treatment. We greatly appreciate the work of all the contributors to this book. They have brought with them tremendous diversity of perspectives and fields, which is truly reflective of the complexity of the topic, and they have come together in this project to serve as the node of multidisciplinary collaboration in this field. Finally, we must acknowledge the thousands of cancer patients who have participated in the studies, and who have inspired us to gather information to significantly progress knowledge in the field in recent years.
Leading clinicians and investigators review in a comprehensible and user-friendly style all the latest information about the molecular biology of cell cycle control and demonstrate its clinical relevance to understanding neoplastic diseases. Topics range from Cdk inhibitors and cell cycle regulators to the prognostic value of p27 and tumor suppressor genes as diagnostic tools. Actual case studies show how the new molecular understanding has produced such drugs as Flavopiridol and Sulindac. The book brings all the recent critical research findings to bear on clinical practice, and clearly shows their powerful impact on the diagnostics, prognostics, and therapeutics of cancer, AIDS, and cardiovascular disease.
This new volume updates the reader on selected areas of targeted therapy in breast cancer, with special emphasis on chemoprevention strategies, drug resistance, biomarkers, combination chemotherapy, angiogenesis inhibition and pharmacogenomics in the context of clinical efficacy. This selected review of targeted therapies will guide the reader on effective treatment as part of an integrated programme of patient management.
Microtubules are at the heart of cellular self-organization, and their dynamic nature allows them to explore the intracellular space and mediate the transport of cargoes from the nucleus to the outer edges of the cell and back. In Microtubule Dynamics: Methods and Protocols, experts in the field provide an up-to-date collection of methods and approaches that are used to investigate microtubule dynamics in vitro and in cells. Beginning with the question of how to analyze microtubule dynamics, the volume continues with detailed descriptions of how to isolate tubulin from different sources and with different posttranslational modifications, methods used to study microtubule dynamics and microtubule interactions in vitro, techniques to investigate the ultrastructure of microtubules and associated proteins, assays to study microtubule nucleation, turnover, and force production in cells, as well as approaches to isolate novel microtubule-associated proteins and their interacting proteins. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Definitive and practical, Microtubule Dynamics: Methods and Protocols provides the key protocols needed by novices and experts on how to perform a broad range of well-established and newly-emerging techniques in this vital field.