Download Free Cell Biology Of The Axon Book in PDF and EPUB Free Download. You can read online Cell Biology Of The Axon and write the review.

In this, the post-genomic age, our knowledge of biological systems continues to expand and progress. As the research becomes more focused, so too does the data. Genomic research progresses to proteomics and brings us to a deeper understanding of the behavior and function of protein clusters. And now proteomics gives way to neuroproteomics as we beg
Recent years have witnessed striking advances in research on axons at a cellular level that substantially impact our current understanding of axonal biology. Newer findings and their ramifications are critically reviewed in the 16 chapters of this volume by authors highly qualified by virtue of their scientific contributions to research areas they know and write about. Five basic areas (I to V) germane to axonal biology are highlighted, beginning with (I) signaling interactions mediating myelination, and differentiation of axonal membrane domains; (IIa) issues surrounding organization and transport dynamics of neurofilaments in axons, (IIb) mechanisms regulating microtubule organization and dynamics, misregulation of which causes axonal degeneration, and (IIc) the roles actin binding proteins play in regulating organization and functions of the actin filament system in mature and growing axons; (IIIa) myosin motor proteins and cargoes intrinsic to the axon compartment, (IIIb) mitochondrial transport motors, and imperatives governing transport dynamics and directional delivery, (IIIc) mechanisms mediating retrograde signaling associated with NGF’s role in trophic-dependent neuronal survival, and (IIId) potential for impaired subcellular targeting of a -synuclein as a mechanism for accumulation of Lewy body inclusions in synucleinopathies; (IVa) occurrence and organization of discrete ribosome-containing domains in axons, (IVb) endogenous mRNAs, classes of proteins translated locally, and RNP trafficking in axons, (IVc) importance of locally synthesized nuclear encoded mitochondrial proteins for maintenance, function and survival of axons, (IVd) occurrence of RNA trafficking from glial cells to axons, and significance glial RNA transcripts may play in expression in axons and axon terminals, (IVe) RNA trafficking and localization of RNA transcripts in axonal growth cones, and signaling pathways that modulate local protein synthesis for directional elongation, and (IVf) genetic and molecular defects underlying spinal muscular atrophy, and roles that SMN gene product plays as a molecular chaperone in mRNA transport and translation; (Va) injury-induced local synthesis of a protein forming a retrograde signaling complex in axons to stimulate regeneration, and (Vb) endogenous and exogenous factors that condition axonal regenerative capacity in PNS and CNS, including injury-induced activation of specific genes governing regeneration. Emergent complexities revealed in this volume compel a major revision in the traditional conceptual model of the axon’s intrinsic makeup and capacities.
During the development of the brain growing nerves send out neuronal processes (axons and dendrites) that connect them to other nerve cells, sensory organs, and muscle tissue. Correct targeting of these is the basis for wiring of the entire nervous system and depends on attractive and repulsive molecular cues that guide the developing neurons to the appropriate destination. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines the mechanisms underlying neuronal guidance and branching and their roles in the development and function of the nervous system. The contributors examine the major guidance cues and their receptors, the intracellular signaling pathways they activate, and their function in the context of important phenomena such as laminar organization and dendrite spacing. Other chapters consider the roles of guidance cues in development of neuronal circuits dedicated to the processing of particular sensory stimuli, such as the visual and olfactory systems. In addition, they cover the roles played by guidance cues and their receptors in neuronal regeneration and human genetic disorders, revealing important clinical implications of work in this field. The book also contains chapters discussing the function of guidance molecules in other processes, such as neuronal cell body migration, axon pruning, and regulation of neuronal cell death. In addition, it explores their roles outside the nervous system for example, in development of the vasculature. This volume is thus of general interest to cell and developmental biologists, as well as all neurobiologists interested in how the nervous system develops and functions.
Intended for use by advanced undergraduate, graduate and medical students, this book presents a study of the unique biochemical and physiological properties of neurons, emphasising the molecular mechanisms that generate and regulate their activity.
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.
Traditionally, oligodendrocytes have been assumed to play a minor supporting role in the central nervous system and their importance has generally been overlooked. For the first time, this book provides a dedicated review of all of the major aspects of oligodendrocyte biology, including development, organization, genetics, and immunobiology. Later chapters emphasize the importance of this underestimated cell to the mammalian central nervous system by exploring the role of myelin synthesis and maintenance in neural disease and repair. Particular attention is paid to multiple sclerosis (MS), arguably the prime example of an acquired demyelinating disease, with detailed examinations of the current concepts regarding demyelination, oligodendroglial damage, and remyelination in MS lesions.
The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."
This book is a collection of classical as well as innovative methods used to investigate axon degeneration with a particular focus on addressing the common challenges encountered while performing these procedures. Particular attention is devoted to the study of axon loss in several model organisms, as each poses unique challenges and provides powerful advantages. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Axon Degeneration: Methods and Protocols is an ideal guide for facilitating the application and further development of these protocols, which will help the scientific community tackle important questions regarding axon degeneration. Chapters 2, 3, and 20 are available Open Access under a Creative Commons Attribution 4.0 International License via link.springer.com.
A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid