Download Free Cell Based Therapy For Retinal Degenerative Disease Book in PDF and EPUB Free Download. You can read online Cell Based Therapy For Retinal Degenerative Disease and write the review.

This book discusses why specific diseases are being targeted for cell-based retinal therapy, what evidence exists that justifies optimism for this approach, and what challenges must be managed in order to bring this technology from the laboratory into routine clinical practice. There are a number of unanswered questions (e.g., surgical approach to cell delivery, management of immune response, optimum cell type to transplant) that very likely are not going to be answered until human trials are undertaken, but there is a certain amount of “de-risking” that can be done with preclinical experimentation. This book is essential reading for scientists, clinicians, and advanced students in stem cell research, cell biology, and ophthalmology.
Ocular neuroprotection is aimed at protecting the death of photoreceptors, retinal ganglion, or other important neurons in cases of disease or trauma. Levin (ophthalmology and neurology, U. of Wisconsin at Madison, US) and Di Polo (pathology and cell biology, U. of Montreal, Canada) present 18 chapt.
This book will contain the proceedings of the XIV International Symposium on Retinal Degeneration (RD2010), held July 13-17, 2010, in Mont-Tremblant, Quebec, Canada. The volume will present representative state-of-the-art research in almost all areas of retinal degenerations, ranging from cytopathologic, physiologic, diagnostic and clinical aspects; animal models; mechanisms of cell death; candidate genes, cloning, mapping and other aspects of molecular genetics; and developing potential therapeutic measures such as gene therapy and neuroprotective agents for potential pharmaceutical therapy.
Since the first successful isolation and cultivation of human embryonic stem cells at the University of Wisconsin, Madison in 1998, there has been high levels of both interest and controversy in this area of research. This book provides a concise overview of an exciting field, covering the characteristics of both human embryonic stem cells and pluripotent stem cells from other human cell lineages. The following chapters describe state-of-the-art differentiation and characterization of specific ectoderm, mesoderm and endoderm-derived lineages from human embryonic stem cells, emphasizing how these can be used to study human developmental mechanisms. A further chapter discusses genetic manipulation of human ES cells. The concluding section covers therapeutic applications of human ES cells, as well as addressing the ethical and legal issues that this research have raised.
This book looks at where stem cell technology is presently and how it is instrumental in advancing the field of disease modeling and cell transplantation. By focusing on major human disorders such as Alzheimer’s disease, cancer, and heart disorders, the book summarizes the major findings in the field of human stem cells and dissect the current limitations on our understanding of stem cells biology. The chapters focus on the genetics, genomics, epigenetics and physiology of stem cells models, together with technological advances on molecular biology such as CRISPR/Cas9 or epigenetic editing, that will be instrumental in the future of human disease modeling and treatment. In base of the limitations of current disease models and in front of the unmet necessity of finding therapeutical interventions for human disorders, the availability of stem cell technology has opened new doors for several fields. The unlimited self-renewal capacity and more extensive differentiation potential of stem cells offers a theoretically inexhaustible and replenishable source of any cell subtype. Since Professor Shinya Yamanaka described it, 10 years ago in his seminal paper, that somatic cells could be reprogrammed to inducible stem cells (iPSC) just by expressing four transcription factors, the field of has exploded, especially its applications in biomedical research.
Patient specific and disease specific stem cell lines have already introduced groundbreaking advances into the research and practice of ophthalmology. This volume provides a comprehensive and engaging overview of the latest innovations in the field. Twelve chapters discuss the fastest growing areas in ophthalmological stem cell research, from disease modelling, drug screening and gene targeting to clinical genetics and regenerative treatments. Innovative results from stem cell research of the past decade are pointing the way toward practicable treatments for retinitis pigmentosa, age related macular degeneration, and Stargardt disease. What future directions will stem cell research take? Researchers, graduate students, and fellows alike will find food for thought in this insightful guide tapping into the collective knowledge of leaders in the field. Stem Cells in Ophthalmology is part of the Stem Cells in Regenerative Medicine series dedicated to discussing current challenges and future directions in stem cell research.
This advanced text, first published in 2006, takes a developmental approach to the presentation of our understanding of how vertebrates construct a retina. Written by experts in the field, each of the seventeen chapters covers a specific step in the process, focusing on the underlying molecular, cellular, and physiological mechanisms. There is also a special section on emerging technologies, including genomics, zebrafish genetics, and stem cell biology that are starting to yield important insights into retinal development. Primarily aimed at professionals, both biologists and clinicians working with the retina, this book provides a concise view of vertebrate retinal development. Since the retina is 'an approachable part of the brain', this book will also be attractive to all neuroscientists interested in development, as processes required to build this exquisitely organized system are ultimately relevant to all other parts of the central nervous system.
Vision is the most important sense in higher mammals. The retina is the first step in visual processing and the window to the brain. It is not surprising that problems arising in the retina lead to moderate to severe visual impairments. We offer here a collection of reviews as well as original papers dealing with various aspects of retinal function as well as dysfunction. New approaches in retinal research are described, such as the expression and localization of the endocannabinoid system in the normal retina and the role of cannabinoid receptors that could offer new avenues of research in the development of potential treatments for retinal diseases. Moreover, new insights are offered in advancing knowledge towards the prevention and cure of visual pathologies, mainly AMD, RP, and diabetic retinopathy.
In this volume, some of the leading authorities present their exploration of applications of stem cell therapy to the treatment of major causes of blindness, including degenerative diseases and glaucoma. The diagnostic approach to patients, general concepts of cell-based therapy, immunological considerations, approaches to cell delivery (including engineered scaffolds), combined cell and gene therapy, nanomedicine applications to cell therapy and regulatory issues pertaining to manufacture and production are all considered in detail. The book serves as an excellent introduction to a field that is now entering early-stage clinical trials and promises to operate at the leading edge of regenerative medicine. Retina specialists, general ophthalmologists as well as researchers will find here a wealth of information on the translational aspects of cell-based therapies. Further, business executives and students interested in understanding the potential applications of stem cell therapy to retinal degenerative disease and glaucoma will also find this book informative reading.