Download Free Cell And Animal Models In Aging And Dementia Research Book in PDF and EPUB Free Download. You can read online Cell And Animal Models In Aging And Dementia Research and write the review.

Using the most well-studied behavioral analyses of animal subjects to promote a better understanding of the effects of disease and the effects of new therapeutic treatments on human cognition, Methods of Behavior Analysis in Neuroscience provides a reference manual for molecular and cellular research scientists in both academia and the pharmaceutic
Neurodegenerative diseases are the most frequent cause of dementia, representing a burden for public health systems (especially in middle and middle-high income countries). Although most research on this issue is concentrated in first-world centers, growing efforts in South America are affording important breakthroughs. This emerging agenda poses new challenges for the region but also new opportunities for the field. This book aims to integrate the community of experts across the globe and the region, and to establish new challenges and developments for future investigation. We present research focused on neurodegenerative research in South America. We introduce studies assessing the interplay among genetic, neural, and behavioral dimensions of these diseases, as well as articles on vulnerability factors, comparisons of findings from various countries, and works promoting multicenter and collaborative networking. More generally, our book covers a broad scope of human-research approaches (behavioral assessment, neuroimaging, electromagnetic techniques, brain connectivity, peripheral measures), animal methodologies (genetics, epigenetics, proteomics, metabolomics, other molecular biology tools), species (all human and non-human animals, sporadic, and genetic versions), and article types (original research, review, and opinion papers). Through this wide-ranging proposal, we hope to introduce a fresh approach to the challenges and opportunities of research on neurodegeneration in South America.
Although age has been recognized as a risk factor for late-onset dementia of Alzheimer type, its etiology is unknown as yet. Several age-related metabolic abnormalities may thus become important for the pathogenesis of the late-onset form. Studies at the cellular/molecular level in brain tissue are possible post mortem, but lack information on the beginning of the disorder. In this supplement, different approaches are dealt with how to induce structural and/or metabolic abnormalities in relevant cell cultures, in brain slices and in experimental animals, and how behavioral changes parallel the metabolic variations.
Animal Experimentation: Working Towards a Paradigm Change critically appraises current animal use in science and discusses ways in which we can contribute to a paradigm change towards human-biology based approaches.
High-throughput measurements of gene expression and genetic marker data facilitate systems biologic and systems genetic data analysis strategies. Gene co-expression networks have been used to study a variety of biological systems, bridging the gap from individual genes to biologically or clinically important emergent phenotypes.
Here is a broad overview of the central topics and issues in psychopharmacology, biological psychiatry and behavioral neurosciences, with information about developments in the field, including novel drugs and technologies. The more than 2000 entries are written by leading experts in pharmacology and psychiatry and comprise in-depth essays, illustrated with full-color figures, and are presented in a lucid style.
Recent studies have indicated that epigenetic processes may play a major role in both cellular and organismal aging. These epigenetic processes include not only DNA methylation and histone modifications, but also extend to many other epigenetic mediators such as the polycomb group proteins, chromosomal position effects, and noncoding RNA. The topics of this book range from fundamental changes in DNA methylation in aging to the most recent research on intervention into epigenetic modifications to modulate the aging process. The major topics of epigenetics and aging covered in this book are: 1) DNA methylation and histone modifications in aging; 2) Other epigenetic processes and aging; 3) Impact of epigenetics on aging; 4) Epigenetics of age-related diseases; 5) Epigenetic interventions and aging: and 6) Future directions in epigenetic aging research. The most studied of epigenetic processes, DNA methylation, has been associated with cellular aging and aging of organisms for many years. It is now apparent that both global and gene-specific alterations occur not only in DNA methylation during aging, but also in several histone alterations. Many epigenetic alterations can have an impact on aging processes such as stem cell aging, control of telomerase, modifications of telomeres, and epigenetic drift can impact the aging process as evident in the recent studies of aging monozygotic twins. Numerous age-related diseases are affected by epigenetic mechanisms. For example, recent studies have shown that DNA methylation is altered in Alzheimer’s disease and autoimmunity. Other prevalent diseases that have been associated with age-related epigenetic changes include cancer and diabetes. Paternal age and epigenetic changes appear to have an effect on schizophrenia and epigenetic silencing has been associated with several of the progeroid syndromes of premature aging. Moreover, the impact of dietary or drug intervention into epigenetic processes as they affect normal aging or age-related diseases is becoming increasingly feasible.
Recognition that aging is not the accumulation of disease, but rather comprises fundamental biological processes that are amenable to experimental study, is the basis for the recent growth of experimental biogerontology. As increasingly sophisticated studies provide greater understanding of what occurs in the aging brain and how these changes occur
Societies around the world are concerned about dementia and the other forms of cognitive impairment that affect many older adults. We now know that brain changes typically begin years before people show symptoms, which suggests a window of opportunity to prevent or delay the onset of these conditions. Emerging evidence that the prevalence of dementia is declining in high-income countries offers hope that public health interventions will be effective in preventing or delaying cognitive impairments. Until recently, the research and clinical communities have focused primarily on understanding and treating these conditions after they have developed. Thus, the evidence base on how to prevent or delay these conditions has been limited at best, despite the many claims of success made in popular media and advertising. Today, however, a growing body of prevention research is emerging. Preventing Cognitive Decline and Dementia: A Way Forward assesses the current state of knowledge on interventions to prevent cognitive decline and dementia, and informs future research in this area. This report provides recommendations of appropriate content for inclusion in public health messages from the National Institute on Aging.
Alzheimer disease causes the gradual deterioration of cognitive function, including severe memory loss and impairments in abstraction and reasoning. Understanding the complex changes that occur in the brain as the disease progressesincluding the accumulation of amyloid plaques and neurofibrillary tanglesis critical for the development of successful therapeutic approaches. Written and edited by leading experts in the field, this collection from Cold Spring Harbor Perspectives in Medicine includes contributions covering all aspects of Alzheimer disease, from our current molecular understanding to therapeutic agents that could be used to treat and, ultimately, prevent it. Contributors discuss the biochemistry and cell biology of amyloid -protein precursor (APP), tau, presenilin, -secretase, and apolipoprotein E and their involvement in Alzheimer disease. They also review the clinical, neuropathological, imaging, and biomarker phenotypes of the disease; genetic alterations associated with the disorder; and epidemiological insights into its causation and pathogenesis. This comprehensive volume, which includes discussions of therapeutic strategies that are currently used or under development, is a vital reference for neurobiologists, cell biologists, pathologists, and other scientists pursuing the biological basis of Alzheimer disease, as well as investigators, clinicians, and students interested in its pathogenesis, treatment, and prevention.