Download Free Ccu And Ccs Building Blocks For Climate Protection In Industry Book in PDF and EPUB Free Download. You can read online Ccu And Ccs Building Blocks For Climate Protection In Industry and write the review.

Germany wishes to cut its greenhouse gas emissions by 80 to 95 per cent by 2050. However, despite the success to date, the measures which have already been planned and implemented are not suffi cient for achieving this ambitious goal. In addition to the energy sector, the largest source of greenhouse gas emissions, German industry is also responsible for releasing considerable volumes of global warming gases. In its Climate Action Plan 2050, the Federal Government has for the fi rst time set a sector target for industry. The present acatech POSITION PAPER analyses the options for (re)utilising and storing CO2 (Carbon Capture and Utilisation (CCU) and Carbon Capture and Storage (CCS)) which come into consideration for reducing greenhouse gas emissions from industrial processes. It is recommended that a wide-ranging public debate about the use of CCU and CCS be conducted in the near future. Only then will it be possible to take account of reservations about CCU and CCS, further develop suitable technology in good time and bring it to market maturity so that the necessary infrastructure can be planned, approved, funded and constructed.
This book compiles and explains technical terms in sustainable finance in an easy-to-navigate A-Z format. The interdisciplinary nature of sustainable finance means that those researching and working in the field often have to turn to a variety of different sources to look up various non-financial terms. Recognizing this issue, Ibrahim Sancak and Elisa Aracil have curated a comprehensive list of the key terms most commonly used in the field. Each entry maps out an important concept or idea and illustrates how it relates more broadly across this growing discipline, such as the changes and innovations required by the financial sector to meet the United Nation’s Sustainable Development Goals. Overall, Essential Concepts of Sustainable Finance will enable readers to communicate more effectively about finance within the context of sustainability. With related terms and further reading included alongside the entries, this innovative and accessible volume will be of great interest to students, scholars, and practitioners alike.
Sustainability Engineering: Challenges, Technologies, and Applications focuses on emerging topics within sustainability science and engineering, including the circular economy, advanced recycling technologies, decarbonization, renewable energy, and waste valorization. Readers will learn the trends driving today’s sustainability research and innovation as well as the latest in sustainable process technologies. This book: Addresses emerging sustainability development challenges, progress, and disruptive technologies Discusses biological sustainability, recycling technologies, and sustainable process design and manufacture Features a comprehensive view from renowned experts who are leaders in their respective research areas This work is aimed at an interdisciplinary audience of engineers and scientists working on solutions to advance the development and application of sustainable technologies, including – but not limited to – chemical and environmental engineers.
Carbon Dioxide Utilisation: Closing the Carbon Cycle explores areas of application such as conversion to fuels, mineralization, conversion to polymers, and artificial photosynthesis as well as assesses the potential industrial suitability of the various processes. After an introduction to the thermodynamics, basic reactions, and physical chemistry of carbon dioxide, the book proceeds to examine current commercial and industrial processes, and the potential for carbon dioxide as a green and sustainable resource. While carbon dioxide is generally portrayed as a "bad" gas, a waste product, and a major contributor to global warming, a new branch of science is developing to convert this "bad" gas into useful products. This book explores the science behind converting CO2 into fuels for our cars and planes, and for use in plastics and foams for our homes and cars, pharmaceuticals, building materials, and many more useful products. Carbon dioxide utilization is a rapidly expanding area of research that holds a potential key to sustainable, petrochemical-free chemical production and energy integration. - Accessible and balanced between chemistry, engineering, and industrial applications - Informed by blue-sky thinking and realistic possibilities for future technology and applications - Encompasses supply chain sustainability and economics, processes, and energy integration
This Working Group III contribution to the IPCC Sixth Assessment Report provides a comprehensive and transparent assessment of the literature on climate change mitigation. The report assesses progress in climate change mitigation options for reducing emissions and enhancing sinks. With greenhouse gas emissions at the highest levels in human history, this report provides options to achieve net zero, as pledged by many countries. The report highlights for the first time the social and demand-side aspects of climate mitigation, and assesses the literature on human behaviour, lifestyle, and culture, and its implications for mitigation action. It brings a wide range of disciplines, notably from the social sciences, within the scope of the assessment. IPCC reports are a trusted source for decision makers, policymakers, and stakeholders at all levels (international, regional, national, local) and in all branches (government, businesses, NGOs). Available as Open Access on Cambridge Core.
Advances in Carbon Capture reviews major implementations of CO2 capture, including absorption, adsorption, permeation and biological techniques. For each approach, key benefits and drawbacks of separation methods and technologies, perspectives on CO2 reuse and conversion, and pathways for future CO2 capture research are explored in depth. The work presents a comprehensive comparison of capture technologies. In addition, the alternatives for CO2 separation from various feeds are investigated based on process economics, flexibility, industrial aspects, purification level and environmental viewpoints. - Explores key CO2 separation and compare technologies in terms of provable advantages and limitations - Analyzes all critical CO2 capture methods in tandem with related technologies - Introduces a panorama of various applications of CO2 capture
Hydrogen technologies are key for achieving a carbon-neutral economy; these offer solutions for the further expansion of renewable energy supplies, climate-neutral industry processes and sustainable mobility. For Germany and Europe alike, they present an opportunity to maintain industrial value creation, expand export opportunities and secure technological sovereignty. In this book, the Fraunhofer-Gesellschaft presents the knowledge and experience it has acquired along the entire value chain of the hydrogen economy. This encompasses materials and system development, production, system upscaling, energy sector applications, emission-intensive industry processes and mobility, as well as the practical, overarching issues of safety, standardization and service life.
In the context of wastewater treatment, Bioelectrochemical Systems (BESs) have gained considerable interest in the past few years, and several BES processes are on the brink of application to this area. This book, written by a large number of world experts in the different sub-topics, describes the different aspects and processes relevant to their development. Bioelectrochemical Systems (BESs) use micro-organisms to catalyze an oxidation and/or reduction reaction at an anodic and cathodic electrode respectively. Briefly, at an anode oxidation of organic and inorganic electron donors can occur. Prime examples of such electron donors are waste organics and sulfides. At the cathode, an electron acceptor such as oxygen or nitrate can be reduced. The anode and the cathode are connected through an electrical circuit. If electrical power is harvested from this circuit, the system is called a Microbial Fuel Cell; if electrical power is invested, the system is called a Microbial Electrolysis Cell. The overall framework of bio-energy and bio-fuels is discussed. A number of chapters discuss the basics – microbiology, microbial ecology, electrochemistry, technology and materials development. The book continues by highlighting the plurality of processes based on BES technology already in existence, going from wastewater based reactors to sediment based bio-batteries. The integration of BESs into existing water or process lines is discussed. Finally, an outlook is provided of how BES will fit within the emerging biorefinery area.
This book provides the latest global perspective on the role and value of CCS in delivering temperature targets and reducing the impact of global warming.