Download Free Cca175 Cloudera Hadoop And Spark Developer Exam Hands On Practice Book And Preparation Book in PDF and EPUB Free Download. You can read online Cca175 Cloudera Hadoop And Spark Developer Exam Hands On Practice Book And Preparation and write the review.

CCA175 , CCP DE575
Data is bigger, arrives faster, and comes in a variety of formats—and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, you’ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow
Hadoop in Action teaches readers how to use Hadoop and write MapReduce programs. The intended readers are programmers, architects, and project managers who have to process large amounts of data offline. Hadoop in Action will lead the reader from obtaining a copy of Hadoop to setting it up in a cluster and writing data analytic programs. The book begins by making the basic idea of Hadoop and MapReduce easier to grasp by applying the default Hadoop installation to a few easy-to-follow tasks, such as analyzing changes in word frequency across a body of documents. The book continues through the basic concepts of MapReduce applications developed using Hadoop, including a close look at framework components, use of Hadoop for a variety of data analysis tasks, and numerous examples of Hadoop in action. Hadoop in Action will explain how to use Hadoop and present design patterns and practices of programming MapReduce. MapReduce is a complex idea both conceptually and in its implementation, and Hadoop users are challenged to learn all the knobs and levers for running Hadoop. This book takes you beyond the mechanics of running Hadoop, teaching you to write meaningful programs in a MapReduce framework. This book assumes the reader will have a basic familiarity with Java, as most code examples will be written in Java. Familiarity with basic statistical concepts (e.g. histogram, correlation) will help the reader appreciate the more advanced data processing examples. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.
If you’ve been asked to maintain large and complex Hadoop clusters, this book is a must. Demand for operations-specific material has skyrocketed now that Hadoop is becoming the de facto standard for truly large-scale data processing in the data center. Eric Sammer, Principal Solution Architect at Cloudera, shows you the particulars of running Hadoop in production, from planning, installing, and configuring the system to providing ongoing maintenance. Rather than run through all possible scenarios, this pragmatic operations guide calls out what works, as demonstrated in critical deployments. Get a high-level overview of HDFS and MapReduce: why they exist and how they work Plan a Hadoop deployment, from hardware and OS selection to network requirements Learn setup and configuration details with a list of critical properties Manage resources by sharing a cluster across multiple groups Get a runbook of the most common cluster maintenance tasks Monitor Hadoop clusters—and learn troubleshooting with the help of real-world war stories Use basic tools and techniques to handle backup and catastrophic failure
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. The Comprehensive, Up-to-Date Apache Hadoop Administration Handbook and Reference “Sam Alapati has worked with production Hadoop clusters for six years. His unique depth of experience has enabled him to write the go-to resource for all administrators looking to spec, size, expand, and secure production Hadoop clusters of any size.” —Paul Dix, Series Editor In Expert Hadoop® Administration, leading Hadoop administrator Sam R. Alapati brings together authoritative knowledge for creating, configuring, securing, managing, and optimizing production Hadoop clusters in any environment. Drawing on his experience with large-scale Hadoop administration, Alapati integrates action-oriented advice with carefully researched explanations of both problems and solutions. He covers an unmatched range of topics and offers an unparalleled collection of realistic examples. Alapati demystifies complex Hadoop environments, helping you understand exactly what happens behind the scenes when you administer your cluster. You’ll gain unprecedented insight as you walk through building clusters from scratch and configuring high availability, performance, security, encryption, and other key attributes. The high-value administration skills you learn here will be indispensable no matter what Hadoop distribution you use or what Hadoop applications you run. Understand Hadoop’s architecture from an administrator’s standpoint Create simple and fully distributed clusters Run MapReduce and Spark applications in a Hadoop cluster Manage and protect Hadoop data and high availability Work with HDFS commands, file permissions, and storage management Move data, and use YARN to allocate resources and schedule jobs Manage job workflows with Oozie and Hue Secure, monitor, log, and optimize Hadoop Benchmark and troubleshoot Hadoop
The SAS® Certified Specialist Prep Guide: Base Programming Using SAS® 9.4 prepares you to take the new SAS 9.4 Base Programming -- Performance-Based Exam. This is the official guide by the SAS Global Certification Program. This prep guide is for both new and experienced SAS users, and it covers all the objectives that are tested on the exam. New in this edition is a workbook whose sample scenarios require you to write code to solve problems and answer questions. Answers for the chapter quizzes and solutions for the sample scenarios in the workbook are included. You will also find links to exam objectives, practice exams, and other resources such as the Base SAS® glossary and a list of practice data sets. Major topics include importing data, creating and modifying SAS data sets, and identifying and correcting both data syntax and programming logic errors. All exam topics are covered in these chapters: Setting Up Practice Data Basic Concepts Accessing Your Data Creating SAS Data Sets Identifying and Correcting SAS Language Errors Creating Reports Understanding DATA Step Processing BY-Group Processing Creating and Managing Variables Combining SAS Data Sets Processing Data with DO Loops SAS Formats and Informats SAS Date, Time, and Datetime Values Using Functions to Manipulate Data Producing Descriptive Statistics Creating Output Practice Programming Scenarios (Workbook)
Harness the power of Scala to program Spark and analyze tonnes of data in the blink of an eye! About This Book Learn Scala's sophisticated type system that combines Functional Programming and object-oriented concepts Work on a wide array of applications, from simple batch jobs to stream processing and machine learning Explore the most common as well as some complex use-cases to perform large-scale data analysis with Spark Who This Book Is For Anyone who wishes to learn how to perform data analysis by harnessing the power of Spark will find this book extremely useful. No knowledge of Spark or Scala is assumed, although prior programming experience (especially with other JVM languages) will be useful to pick up concepts quicker. What You Will Learn Understand object-oriented & functional programming concepts of Scala In-depth understanding of Scala collection APIs Work with RDD and DataFrame to learn Spark's core abstractions Analysing structured and unstructured data using SparkSQL and GraphX Scalable and fault-tolerant streaming application development using Spark structured streaming Learn machine-learning best practices for classification, regression, dimensionality reduction, and recommendation system to build predictive models with widely used algorithms in Spark MLlib & ML Build clustering models to cluster a vast amount of data Understand tuning, debugging, and monitoring Spark applications Deploy Spark applications on real clusters in Standalone, Mesos, and YARN In Detail Scala has been observing wide adoption over the past few years, especially in the field of data science and analytics. Spark, built on Scala, has gained a lot of recognition and is being used widely in productions. Thus, if you want to leverage the power of Scala and Spark to make sense of big data, this book is for you. The first part introduces you to Scala, helping you understand the object-oriented and functional programming concepts needed for Spark application development. It then moves on to Spark to cover the basic abstractions using RDD and DataFrame. This will help you develop scalable and fault-tolerant streaming applications by analyzing structured and unstructured data using SparkSQL, GraphX, and Spark structured streaming. Finally, the book moves on to some advanced topics, such as monitoring, configuration, debugging, testing, and deployment. You will also learn how to develop Spark applications using SparkR and PySpark APIs, interactive data analytics using Zeppelin, and in-memory data processing with Alluxio. By the end of this book, you will have a thorough understanding of Spark, and you will be able to perform full-stack data analytics with a feel that no amount of data is too big. Style and approach Filled with practical examples and use cases, this book will hot only help you get up and running with Spark, but will also take you farther down the road to becoming a data scientist.
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Data in all domains is getting bigger. How can you work with it efficiently? Recently updated for Spark 1.3, this book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. This edition includes new information on Spark SQL, Spark Streaming, setup, and Maven coordinates. Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You’ll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning. Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell Leverage Spark’s powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm Learn how to deploy interactive, batch, and streaming applications Connect to data sources including HDFS, Hive, JSON, and S3 Master advanced topics like data partitioning and shared variables
In this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. You’ll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques—classification, collaborative filtering, and anomaly detection among others—to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you’ll find these patterns useful for working on your own data applications. Patterns include: Recommending music and the Audioscrobbler data set Predicting forest cover with decision trees Anomaly detection in network traffic with K-means clustering Understanding Wikipedia with Latent Semantic Analysis Analyzing co-occurrence networks with GraphX Geospatial and temporal data analysis on the New York City Taxi Trips data Estimating financial risk through Monte Carlo simulation Analyzing genomics data and the BDG project Analyzing neuroimaging data with PySpark and Thunder