Download Free Cathodic Protection Design For Buried Steel Pipes Book in PDF and EPUB Free Download. You can read online Cathodic Protection Design For Buried Steel Pipes and write the review.

This comprehensive handbook covers all aspects of cathodic protection in terms of both practice and theory.
Full text engineering e-book.
Water utilities often do not know the specific cause of external corrosion observed on their water mains, and consequently, the chosen preventative measure may not work effectively. Historically, these choices are based on data from other industries (e.g., gas and oil) and may not be suitable for the water industry. Corrosion of metallic pipes can be caused by a variety of mechanisms, each of which requires a different solution. Determining which corrosion mechanism is at work is not a simple matter, because the resulting pipe damage looks similar for all of them. The failure to properly identify corrosion sources may produce prevention systems that are ineffective or do not last. For example, it is not effective to install an anode bag on a main that has a bacteriological corrosion problem. Similarly, an anode bag installed to reduce corrosion caused by a stray impressed current would be quickly used up and would provide only short-term protection. Much recent research on corrosion has focused on internal corrosion, primarily related to water-quality issues, such as lead and copper control and red water. This project will examine external corrosion, which affects the structural integrity of the pipe and makes it vulnerable to leaks and breakage. After identifying the causes of external corrosion, the study will find economical solutions for each type of corrosion and verify them through field trials.
Corrosion is a naturally occurring cost, worth billions in the oil and gas sector. New regulations, stiffer penalties for non-compliance and aging assets are all leading companies to develop new technology, procedures and bigger budgets catering to one prevailing method of prevention, cathodic protection. Cathodic Corrosion Protection Systems: A Guide for Oil and Gas Industries trains on all the necessary reports, inspection criteria, corrective measures and critical standards needed on various oil and gas equipment, structures, tanks, and pipelines. Demands in the cathodic protection market have driven development for better devices and methods, helping to prolong the equipment and pipeline's life and integrity. Going beyond just looking for leaks, this handbook gives the engineer and manager all the necessary tools needed to put together a safe cathodic protection system, whether it is for buried casing while drilling, offshore structures or submarine pipelines. - Understand how to install, inspect and engage the right cathodic protection systems for various oil and gas equipment, tanks, and pipelines - Properly construct the right procedure and anodes with all relevant US and International standards that apply - Gain knowledge concerning techniques, equipment, measurements and test methods used in real-world field scenarios
Cathodic protection is a method to reduce corrosion by minimizing the difference in potential between anode and cathode. This is achieved by applying a current to the structure to be protected (such as a pipeline) from some outside source. When enough current is applied, the whole structure will be at one potential; thus, anode and cathode sites will not exist. Cathodic protection is commonly used on many types of structures, such as pipelines, underground storage tanks, locks, and ship hulls.
A variable game changer for those companies operating in hostile, corrosive marine environments, Corrosion Control for Offshore Structures provides critical corrosion control tips and techniques that will prolong structural life while saving millions in cost. In this book, Ramesh Singh explains the ABCs of prolonging structural life of platforms and pipelines while reducing cost and decreasing the risk of failure. Corrosion Control for Offshore Structures places major emphasis on the popular use of cathodic protection (CP) combined with high efficiency coating to prevent subsea corrosion. This reference begins with the fundamental science of corrosion and structures and then moves on to cover more advanced topics such as cathodic protection, coating as corrosion prevention using mill applied coatings, field applications, and the advantages and limitations of some common coating systems. In addition, the author provides expert insight on a number of NACE and DNV standards and recommended practices as well as ISO and Standard and Test Methods. Packed with tables, charts and case studies, Corrosion Control for Offshore Structures is a valuable guide to offshore corrosion control both in terms of its theory and application. - Prolong the structural life of your offshore platforms and pipelines - Understand critical topics such as cathodic protection and coating as corrosion prevention with mill applied coatings - Gain expert insight on a number of NACE and DNV standards and recommended practices as well as ISO and Standard Test Methods.
Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, numerical simulations for cathodic protection of pipelines, and use of corrosion inhibitors in managing corrosion in underground pipelines. The methods described in part two for detecting corrosion in underground pipelines include: magnetic flux leakage, close interval potential surveys (CIS/CIPS), Pearson surveys, in-line inspection, and use of both electrochemical and optical probes. While the emphasis is on pipelines transporting fossil fuels, the concepts apply as well to metallic pipes for delivery of water and other liquids. Underground Pipeline Corrosion is a comprehensive resource for corrosion, materials, chemical, petroleum, and civil engineers constructing or managing both onshore and offshore pipeline assets; professionals in steel and coating companies; and academic researchers and professors with an interest in corrosion and pipeline engineering. - Reviews the causes and considers the detection and prevention of corrosion to underground pipes - Addresses a lack of current, readily available information on the subject - Case studies demonstrate how corrosion is managed in the underground pipeline industry
First Published in 2017. Pipeline integrity is key to maintaining operational success, safety and security and minimising harm to the environment. Corrosion is a dominant contributory factor to failures, leaks and integrity threats in pipelines. Therefore, its optimum control within an integrity management framework is paramount for the cost-effective design of facilities and ensuring continued, uninterrupted and safe operations within the expected design life. This recommended practice (RP) is a compendium of current best practices and state-of-the-art knowledge by major operators, engineering contractors and service companies involved in hydrocarbon pro-duction and transportation. The RP incorporates some minimum operational requirements and practices to ensure that when man-aging corrosion in pipelines, fundamental principles are followed. It covers management of corrosion for pipelines carrying hydrocarbons, injection water and/or produced water from design to decommissioning. It is structured to follow the logical steps of a basic corrosion management process and makes references to relevant and available international standards and/or recommended practices. It is intended for use by personnel from the petroleum industry having knowledge of corrosion and materials. It is hoped that this RP will prove to be a key reference document for engineers, suppliers and con-tractors working in the oil and gas industry, paving the way for corrosion-free operation of pipelines with the ultimate goal of improving safety, security and minimising the impact on the environment
A multi-disciplinary, multi-industry overview of microbiologically influenced corrosion, with strategies for diagnosis and control or prevention Microbiologically Influenced Corrosion helps engineers and scientists understand and combat the costly failures that occur due to microbiologically influenced corrosion (MIC). This book combines recent findings from diverse disciplines into one comprehensive reference. Complete with case histories from a variety of environments, it covers: Biofilm formation Causative organisms, relating bacteria and fungi to corrosion mechanisms for groups of metals Diagnosing and monitoring MIC Electrochemical techniques, with an overview of methods for detection of MIC The impact of alloying elements, including antimicrobial metals, and design features on MIC MIC of non-metallics Strategies for control or prevention of MIC, including engineering, chemical, and biological approaches This is a valuable, all-inclusive reference for corrosion scientists, engineers, and researchers, as well as designers, managers, and operators.