Download Free Categories And Modules With K Theory In View Book in PDF and EPUB Free Download. You can read online Categories And Modules With K Theory In View and write the review.

This book, first published in 2000, is a concise introduction at graduate level to ring theory, module theory and number theory.
This is a concise 2000 introduction at graduate level to ring theory, module theory and number theory.
The book focuses on the relation between transformation groups and algebraic K-theory. The general pattern is to assign to a geometric problem an invariant in an algebraic K-group which determines the problem. The algebraic K-theory of modules over a category is studied extensively and appplied to the fundamental category of G-space. Basic details of the theory of transformation groups sometimes hard to find in the literature, are collected here (Chapter I) for the benefit of graduate students. Chapters II and III contain advanced new material of interest to researchers working in transformation groups, algebraic K-theory or related fields.
This book is intended to provide a reasonably self-contained account of a major portion of the general theory of rings and modules suitable as a text for introductory and more advanced graduate courses. We assume the famil iarity with rings usually acquired in standard undergraduate algebra courses. Our general approach is categorical rather than arithmetical. The continuing theme of the text is the study of the relationship between the one-sided ideal structure that a ring may possess and the behavior of its categories of modules. Following a brief outline of set-theoretic and categorical foundations, the text begins with the basic definitions and properties of rings, modules and homomorphisms and ranges through comprehensive treatments of direct sums, finiteness conditions, the Wedderburn-Artin Theorem, the Jacobson radical, the hom and tensor functions, Morita equivalence and duality, de composition theory of injective and projective modules, and semi perfect and perfect rings. In this second edition we have included a chapter containing many of the classical results on artinian rings that have hdped to form the foundation for much of the contemporary research on the representation theory of artinian rings and finite dimensional algebras. Both to illustrate the text and to extend it we have included a substantial number of exercises covering a wide spectrum of difficulty. There are, of course" many important areas of ring and module theory that the text does not touch upon.
Informally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebr
This book on modern module and non-commutative ring theory is ideal for beginning graduate students. It starts at the foundations of the subject and progresses rapidly through the basic concepts to help the reader reach current research frontiers. Students will have the chance to develop proofs, solve problems, and to find interesting questions. The first half of the book is concerned with free, projective, and injective modules, tensor algebras, simple modules and primitive rings, the Jacobson radical, and subdirect products. Later in the book, more advanced topics, such as hereditary rings, categories and functors, flat modules, and purity are introduced. These later chapters will also prove a useful reference for researchers in non-commutative ring theory. Enough background material (including detailed proofs) is supplied to give the student a firm grounding in the subject.
A short introduction ideal for students learning category theory for the first time.
Topological K-theory is a key tool in topology, differential geometry and index theory, yet this is the first contemporary introduction for graduate students new to the subject. No background in algebraic topology is assumed; the reader need only have taken the standard first courses in real analysis, abstract algebra, and point-set topology. The book begins with a detailed discussion of vector bundles and related algebraic notions, followed by the definition of K-theory and proofs of the most important theorems in the subject, such as the Bott periodicity theorem and the Thom isomorphism theorem. The multiplicative structure of K-theory and the Adams operations are also discussed and the final chapter details the construction and computation of characteristic classes. With every important aspect of the topic covered, and exercises at the end of each chapter, this is the definitive book for a first course in topological K-theory.
These notes are based on the course of lectures I gave at Harvard in the fall of 1964. They constitute a self-contained account of vector bundles and K-theory assuming only the rudiments of point-set topology and linear algebra. One of the features of the treatment is that no use is made of ordinary homology or cohomology theory. In fact, rational cohomology is defined in terms of K-theory.The theory is taken as far as the solution of the Hopf invariant problem and a start is mode on the J-homomorphism. In addition to the lecture notes proper, two papers of mine published since 1964 have been reproduced at the end. The first, dealing with operations, is a natural supplement to the material in Chapter III. It provides an alternative approach to operations which is less slick but more fundamental than the Grothendieck method of Chapter III, and it relates operations and filtration. Actually, the lectures deal with compact spaces, not cell-complexes, and so the skeleton-filtration does not figure in the notes. The second paper provides a new approach to K-theory and so fills an obvious gap in the lecture notes.
The Proceedings volume is divided into two parts. The first part consists of lectures given during the first two weeks devoted to a workshop featuring state-of-the-art expositions on 'Overview of Algebraic K-theory' including various constructions, examples, and illustrations from algebra, number theory, algebraic topology, and algebraic/differential geometry; as well as on more concentrated topics involving connections of K-theory with Galois, etale, cyclic, and motivic (co)homologies; values of zeta functions, and Arithmetics of Chow groups and zero cycles. The second part consists of research papers arising from the symposium lectures in the third week.