Download Free Categoricity Book in PDF and EPUB Free Download. You can read online Categoricity and write the review.

Recounts the modern transformation of model theory and its effects on the philosophy of mathematics and mathematical practice.
This book constitutes the refereed proceedings of the 14th Annual Conference on Theory and Applications of Models of Computation, TAMC 2017, held in Bern, Switzerland, in April 2017. The 45 revised full papers presented together with 4 invited papers were carefully reviewed and selected from 103 submissions. The main themes of TAMC 2017 have been computability, computer science logic, complexity, algorithms, and models of computation and systems theory.
Model theory is used in every theoretical branch of analytic philosophy: in philosophy of mathematics, in philosophy of science, in philosophy of language, in philosophical logic, and in metaphysics. But these wide-ranging uses of model theory have created a highly fragmented literature. On the one hand, many philosophically significant results are found only in mathematics textbooks: these are aimed squarely at mathematicians; they typically presuppose that the reader has a serious background in mathematics; and little clue is given as to their philosophical significance. On the other hand, the philosophical applications of these results are scattered across disconnected pockets of papers. The first aim of this book, then, is to explore the philosophical uses of model theory, focusing on the central topics of reference, realism, and doxology. Its second aim is to address important questions in the philosophy of model theory, such as: sameness of theories and structure, the boundaries of logic, and the classification of mathematical structures. Philosophy and Model Theory will be accessible to anyone who has completed an introductory logic course. It does not assume that readers have encountered model theory before, but starts right at the beginning, discussing philosophical issues that arise even with conceptually basic model theory. Moreover, the book is largely self-contained: model-theoretic notions are defined as and when they are needed for the philosophical discussion, and many of the most philosophically significant results are given accessible proofs.
This edited collection casts light on central issues within contemporary philosophy of mathematics such as the realism/anti-realism dispute; the relationship between logic and metaphysics; and the question of whether mathematics is a science of objects or structures. The discussions offered in the papers involve an in-depth investigation of, among other things, the notions of mathematical truth, proof, and grounding; and, often, a special emphasis is placed on considerations relating to mathematical practice. A distinguishing feature of the book is the multicultural nature of the community that has produced it. Philosophers, logicians, and mathematicians have all contributed high-quality articles which will prove valuable to researchers and students alike.
The International research Library of Philosophy collects in book form a wide range of important and influential essays in philosophy, drawn predominantly from English-language journals. Each volume in the library deals with a field of enquiry which has received significant attention in philosophy in the last 25 years and is edited by a philosopher noted in that field.
This volume results from two programs that took place at the Institute for Mathematical Sciences at the National University of Singapore: Aspects of Computation — in Celebration of the Research Work of Professor Rod Downey (21 August to 15 September 2017) and Automata Theory and Applications: Games, Learning and Structures (20-24 September 2021).The first program was dedicated to the research work of Rodney G. Downey, in celebration of his 60th birthday. The second program covered automata theory whereby researchers investigate the other end of computation, namely the computation with finite automata, and the intermediate level of languages in the Chomsky hierarchy (like context-free and context-sensitive languages).This volume contains 17 contributions reflecting the current state-of-art in the fields of the two programs.
This Festschrift is published in honor of Rodney G. Downey, eminent logician and computer scientist, surfer and Scottish country dancer, on the occasion of his 60th birthday. The Festschrift contains papers and laudations that showcase the broad and important scientific, leadership and mentoring contributions made by Rod during his distinguished career. The volume contains 42 papers presenting original unpublished research, or expository and survey results in Turing degrees, computably enumerable sets, computable algebra, computable model theory, algorithmic randomness, reverse mathematics, and parameterized complexity, all areas in which Rod Downey has had significant interests and influence. The volume contains several surveys that make the various areas accessible to non-specialists while also including some proofs that illustrate the flavor of the fields.
An accessible history and philosophical commentary on our notion of infinity. How can the infinite, a subject so remote from our finite experience, be an everyday tool for the working mathematician? Blending history, philosophy, mathematics, and logic, Shaughan Lavine answers this question with exceptional clarity. Making use of the mathematical work of Jan Mycielski, he demonstrates that knowledge of the infinite is possible, even according to strict standards that require some intuitive basis for knowledge. Praise for Understanding the Infinite “Understanding the Infinite is a remarkable blend of mathematics, modern history, philosophy, and logic, laced with refreshing doses of common sense. It is a potted history of, and a philosophical commentary on, the modern notion of infinity as formalized in axiomatic set theory . . . An amazingly readable [book] given the difficult subject matter. Most of all, it is an eminently sensible book. Anyone who wants to explore the deep issues surrounding the concept of infinity . . . will get a great deal of pleasure from it.” —Ian Stewart, New Scientist “How, in a finite world, does one obtain any knowledge about the infinite? Lavine argues that intuitions about the infinite derive from facts about the finite mathematics of indefinitely large size . . . The issues are delicate, but the writing is crisp and exciting, the arguments original. This book should interest readers whether philosophically, historically, or mathematically inclined, and large parts are within the grasp of the general reader. Highly recommended.” —D. V. Feldman, Choice
This volume honours the life and work of Solomon Feferman, one of the most prominent mathematical logicians of the latter half of the 20th century. In the collection of essays presented here, researchers examine Feferman’s work on mathematical as well as specific methodological and philosophical issues that tie into mathematics. Feferman’s work was largely based in mathematical logic (namely model theory, set theory, proof theory and computability theory), but also branched out into methodological and philosophical issues, making it well known beyond the borders of the mathematics community. With regard to methodological issues, Feferman supported concrete projects. On the one hand, these projects calibrate the proof theoretic strength of subsystems of analysis and set theory and provide ways of overcoming the limitations imposed by Gödel’s incompleteness theorems through appropriate conceptual expansions. On the other, they seek to identify novel axiomatic foundations for mathematical practice, truth theories, and category theory. In his philosophical research, Feferman explored questions such as “What is logic?” and proposed particular positions regarding the foundations of mathematics including, for example, his “conceptual structuralism.” The contributing authors of the volume examine all of the above issues. Their papers are accompanied by an autobiography presented by Feferman that reflects on the evolution and intellectual contexts of his work. The contributing authors critically examine Feferman’s work and, in part, actively expand on his concrete mathematical projects. The volume illuminates Feferman’s distinctive work and, in the process, provides an enlightening perspective on the foundations of mathematics and logic.
Alan Turing was an inspirational figure who is now recognised as a genius of modern mathematics. In addition to leading the Allied forces' code-breaking effort at Bletchley Park in World War II, he proposed the theoretical foundations of modern computing and anticipated developments in areas from information theory to computer chess. His ideas have been extraordinarily influential in modern mathematics and this book traces such developments by bringing together essays by leading experts in logic, artificial intelligence, computability theory and related areas. Together, they give insight into this fascinating man, the development of modern logic, and the history of ideas. The articles within cover a diverse selection of topics, such as the development of formal proof, differing views on the Church–Turing thesis, the development of combinatorial group theory, and Turing's work on randomness which foresaw the ideas of algorithmic randomness that would emerge many years later.