Download Free Catalytic Oxidation Of Hydrocarbons Book in PDF and EPUB Free Download. You can read online Catalytic Oxidation Of Hydrocarbons and write the review.

The field of petrochemicals started some years ago with the simple addition reaction of water to propylene for the production of isopropyl alcohol. Currently, the petrochemical industry has become a multi-billion dollar enterprise which encompasses a wide field of chemical products. Almost all the basic organic reactions such as hydrogenation, alkylation, substitution, polymerization, etc. are utilized for the production of these chemicals. It may not, however, have been possible to establish this huge industry without the use of different catalysts. In other words, the great advancements in the catalytic area have supported the vast developments in the petrochemical field. In this book, we have adopted the idea of discussing the petrochemical industry from the point of view of reactants' activities and susceptibilities toward different catalysts. The book is thus classified according to the reaction type. This will eriable students and other users of the book to base their understanding of the petrochemical field on the fundamental principles learned in chemistry. How ever, the first chapter is aimed at establishing some basic facts on the petro chemical industry and its major uses. It discusses, without going into details, the raw materials used, the intermediates and the downstream products. The next eight chapters discuss in some detail the main reactions and the catalysts used for the production of chemicals and polymers from petroleum. The last chapter is devoted to a discussion of some of the practical techniques used in the catalytic field.
This book offers a comprehensive overview of the most recent developments in both total oxidation and combustion and also in selective oxidation. For each topic, fundamental aspects are paralleled with industrial applications. The book covers oxidation catalysis, one of the major areas of industrial chemistry, outlining recent achievements, current challenges and future opportunities. One distinguishing feature of the book is the selection of arguments which are emblematic of current trends in the chemical industry, such as miniaturization, use of alternative, greener oxidants, and innovative systems for pollutant abatement. Topics outlined are described in terms of both catalyst and reaction chemistry, and also reactor and process technology.
Volume 1 covers the most important technological aspects of the use of molecular oxygen for catalytic oxidation reactions.Volume 2 addresses the safety issues associated with the use of oxygen in catalytic oxidation reactions.Contents Vol. 1: 1. Introduction. 2. Chemical-physical properties of molecular oxygen. 3. Oxygen production technologies. 4. Chemical fundamentals of oxidation reactions. 5. Reactor technologies for multiphase systems. 6. Liquid phase oxidations. 7. Gas phase selective oxidations. 8. Selective oxidation of paraffins. References. Index. Vol. 2: 9. Introduction to safety problems in the chemical industry. 10. Chemical aspects of combustion in the gaseous phase. 11. Homogeneous chemical explosions: autoignition or spontaneous ignition. 12. Deflagration or propagation of flame. 13. Conditions governing flame propagation capability. 14. Detonation in the gaseous phase. 15. Prevention of and protection against explosions. References. Index.
As in the study of transition metal complexes in solution, molecular spectroscopic methods - principally the infrared, ultraviolet/visible and electron spin resonance spectroscopies - have played key roles in establishing the concepts of coordination chemistry occurring at the surfaces of solids. This book describes the development of the principals of coordination chemistry of oxide surfaces using analyses of data obtained by these methods. The nature, properties, concentration of the surface adsorption centers and their influence on the character of interaction with different molecules are investigated. The book commences with an account of the basic theoretical principles and experimental techniques of the various spectroscopy methods, with special attention devoted to in situ measurements where the oxide or catalyst sample is in contact with the adsorbate or the reactant. A detailed account is presented of the methods for characterizing the oxidation state and degree of coordination of surface cations and oxygen anions by the adsorption of probe molecules. The complexation of many inorganic, organometallic and organic molecules with different oxide systems is critically examined, and a classification of formed surface compounds, based on the interaction with definite type of adsorption centers, is given. Possible mechanisms of numerous catalytic reactions, including the transformation of organic molecules over acidic catalysts via the carboionic mechanism, are discussed using the spectroscopic identifications of reaction intermediates. A comprehensive analysis of the literature on the interpretation of the spectra of surface compounds on oxides is presented. This highly illustrated and extensively referenced volume is intended for specialists working in the fields of surface physical chemistry, surface and materials sciences, and adsorption phenomena and is essential reading for those involved in the heterogeneous catalysis by transition metal-oxides.
The subject of dioxygen activation and homogeneous catalytic oxidation by metal complexes has been in the focus of attention over the last 20 years. The widespread interest is illustrated by its recurring presence among the sessions and subject areas of important international conferences on various aspects of bioinorganic and coordination chemistry as well as catalysis. The most prominent examples are ICCC, ICBIC, EUROBIC, ISHC, and of course the ADHOC series of meetings focusing on the subject itself. Similarly, the number of original and review papers devoted to various aspects of dioxygen activation are on the rise. This trend is due obviously to the relevance of catalytic oxidation to biological processes such as dioxygen transport, and the action of oxygenase and oxidase enzymes related to metabolism. The structural and functional modeling of metalloenzymes, particularly of those containing iron and copper, by means of low-molecular complexes of iron, copper, ruthenium, cobalt, manganese, etc., have provided a wealth of indirect information helping to understand how the active centers of metalloenzymes may operate. The knowledge gained from the study of metalloenzyme models is also applicable in the design of transition metal complexes as catalytsts for specific reactions. This approach has come to be known as biomimetic or bioinspired catalysis and continues to be a fruitful and expanding area of research.
A description of catalytic systems commonly used as model systems in the laboratory and as industrial catalysts in large-scale operations, and a discussion of the mechanisms operating in these reactions. Attempts to describe the elementary steps by quantum chemical methods are also shown, as are rec
Table of contents
The Chemistry of Catalytic Hydrocarbon Conversions covers the various chemical aspects of catalytic conversions of hydrocarbons. This book is composed of eight chapters that include catalytic synthesis of hydrocarbons from carbon monoxide, hydrogen, and methanol. The opening chapters examine various acid- and base-catalyzed reactions, such as isomerization, polymerization, oligomerization, alkylation, catalytic cracking, reforming, hydrocracking, and hydrogenation. The subsequent chapters are devoted to specific catalytic reactions, including heterogeneous hydrogenation, dehydrogenation, aromatization, and oxidation. Other chapters describe the homogeneous catalysis by transition metal organometallic catalysts and the metathesis of unsaturated hydrocarbons. The concluding chapter deals with the synthesis of liquid hydrocarbon fuels from carbon monoxide, hydrogen, methanol, and dimethyl ether. This book is of great benefit to petroleum chemists, engineers, and researchers.
By some measure the most widely produced chemical in the world today, sulfuric acid has an extraordinary range of modern uses, including phosphate fertilizer production, explosives, glue, wood preservative and lead-acid batteries. An exceptionally corrosive and dangerous acid, production of sulfuric acid requires stringent adherence to environmental regulatory guidance within cost-efficient standards of production. This work provides an experience-based review of how sulfuric acid plants work, how they should be designed and how they should be operated for maximum sulfur capture and minimum environmental impact. Using a combination of practical experience and deep physical analysis, Davenport and King review sulfur manufacturing in the contemporary world where regulatory guidance is becoming ever tighter (and where new processes are being required to meet them), and where water consumption and energy considerations are being brought to bear on sulfuric acid plant operations. This 2e will examine in particular newly developed acid-making processes and new methods of minimizing unwanted sulfur emissions. The target readers are recently graduated science and engineering students who are entering the chemical industry and experienced professionals within chemical plant design companies, chemical plant production companies, sulfuric acid recycling companies and sulfuric acid users. They will use the book to design, control, optimize and operate sulfuric acid plants around the world. - Unique mathematical analysis of sulfuric acid manufacturing processes, providing a sound basis for optimizing sulfuric acid manufacturing processes - Analysis of recently developed sulfuric acid manufacturing techniques suggests advantages and disadvantages of the new processes from the energy and environmental points of view - Analysis of tail gas sulfur capture processes indicates the best way to combine sulfuric acid making and tailgas sulfur-capture processes from the energy and environmental points of view - Draws on industrial connections of the authors through years of hands-on experience in sulfuric acid manufacture