Download Free Catalytic Chemistry Book in PDF and EPUB Free Download. You can read online Catalytic Chemistry and write the review.

This text aims to present catalysis in a coherent, unified and easy-to-teach manner. The subject traditionally appears as fragments in courses such as chemical reaction engineering, chemical engineering, kinetics, organometallic chemistry and physical chemistry.
The Chemistry of Catalytic Hydrocarbon Conversions covers the various chemical aspects of catalytic conversions of hydrocarbons. This book is composed of eight chapters that include catalytic synthesis of hydrocarbons from carbon monoxide, hydrogen, and methanol. The opening chapters examine various acid- and base-catalyzed reactions, such as isomerization, polymerization, oligomerization, alkylation, catalytic cracking, reforming, hydrocracking, and hydrogenation. The subsequent chapters are devoted to specific catalytic reactions, including heterogeneous hydrogenation, dehydrogenation, aromatization, and oxidation. Other chapters describe the homogeneous catalysis by transition metal organometallic catalysts and the metathesis of unsaturated hydrocarbons. The concluding chapter deals with the synthesis of liquid hydrocarbon fuels from carbon monoxide, hydrogen, methanol, and dimethyl ether. This book is of great benefit to petroleum chemists, engineers, and researchers.
Designed to give chemical engineers background for managing chemical reactions, this text examines the behavior of chemical reactions and reactors; conservation equations for reactors; heterogeneous reactions; fluid-fluid and fluid-solid reaction systems; heterogeneous catalysis and catalytic kinetics; diffusion and heterogeneous catalysis; and analyses and design of heterogeneous reactors. 1976 edition.
Catalytic Kinetics: Chemistry and Engineering, Second Edition offers a unified view that homogeneous, heterogeneous, and enzymatic catalysis form the cornerstone of practical catalysis. The book has an integrated, cross-disciplinary approach to kinetics and transport phenomena in catalysis, but still recognizes the fundamental differences between different types of catalysis. In addition, the book focuses on a quantitative chemical understanding and links the mathematical approach to kinetics with chemistry. A diverse group of catalysts is covered, including catalysis by acids, organometallic complexes, solid inorganic materials, and enzymes, and this fully updated second edition contains a new chapter on the concepts of cascade catalysis. Finally, expanded content in this edition provides more in-depth discussion, including topics such as organocatalysis, enzymatic kinetics, nonlinear dynamics, solvent effects, nanokinetics, and kinetic isotope effects. - Fully revised and expanded, providing the latest developments in catalytic kinetics - Bridges the gaps that exist between hetero-, homo- and enzymatic-catalysis - Provides necessary tools and new concepts for researchers already working in the field of catalytic kinetics - Written by internationally-renowned experts in the field - Examples and exercises following each chapter make it suitable as an advanced course book
Filling the gap for a book that covers not only plasma in gases but also in liquids, this is all set to become the standard reference for this topic. It provides a broad-based overview of plasma-chemical and plasmacatalytic processes generated by electrical discharges in gases, liquids and gas/liquid environments in both fundamental and applied aspects by focusing on their environmental and green applications and also taking into account their practical and economic viability. With the topics addressed by an international group of major experts, this is a must-have for scientists, engineers, students and postdoctoral researchers specializing in this field.
This book contains the papers and discussions from the sympo!,ium on "The Catalytic Chemistry of Nitrogen Oxides" held at the General Motors Research Laboratories on October 7-8, 1974. This symposium is the eighteenth in the annual series presented by the Research Laboratories. The topics for these symposiums have covered a broad range. Each topic was selected to be of intense current interest and of significant technical importance. There is no question that the subject of the 1974 Symposium satisfies these two criteria. The control of automotive nitrogen oxides has been perhaps the most difficult and controversial area of automotive emissions both in terms of what is necessary and in terms of what is technically feasible. This area has been a source of considerable discussion not only in the technical community but also in governments both in the U. S. and abroad. This meeting brought together scientists working in surface chemistry with engineers working on system design. It also brought together representatives of government, academia and industry. We feel that an important side benefit of the meeting was the improved understanding that was developed between these groups. Participants came from Europe and Japan as well as Canada and the United States. The technical papers spanned the range from fundamental interactions of NO on surfaces through bench scale kinetic and mechanistic studies and ended with catalytic applications. Although the emphasis was on automotive NO removal, stack gas NO x x control was also covered.
Catalysis, Green Chemistry and Sustainable Energy: New Technologies for Novel Business Opportunities offers new possibilities for businesses who want to address the current global transition period to adopt low carbon and sustainable energy production. This comprehensive source provides an integrated view of new possibilities within catalysis and green chemistry in an economic context, showing how these potential new technologies may become useful to business. Fundamentals and specific examples are included to guide the transformation of idea to innovation and business. Offering an overview of the new possibilities for creating business in catalysis, energy and green chemistry, this book is a beneficial tool for students, researchers and academics in chemical and biochemical engineering. - Discusses new developments in catalysis, energy and green chemistry from the perspective of converting ideas to innovation and business - Presents case histories, preparation of business plans, patent protection and IP rights, creation of start-ups, research funds and successful written proposals - Offers an interdisciplinary approach combining science and business
This first book to focus on catalytic processes from the viewpoint of green chemistry presents every important aspect: · Numerous catalytic reductions and oxidations methods · Solid-acid and solid-base catalysis · C-C bond formation reactions · Biocatalysis · Asymmetric catalysis · Novel reaction media like e.g. ionic liquids, supercritical CO2 · Renewable raw materials Written by Roger A. Sheldon -- without doubt one of the leaders in the field with much experience in academia and industry -- and his co-workers, the result is a unified whole, an indispensable source for every scientist looking to improve catalytic reactions, whether in the college or company lab.
Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for catalysts), mixed and complex oxides and salts, halides, sulfides, carbides, and unsupported and supported metals are all considered. The book encompasses applications in industrial chemistry, refinery, petrochemistry, biomass conversion, energy production, and environmental protection technologies. - Provides a systematic and clear approach of the synthesis, solid state chemistry and surface chemistry of all solid state catalysts - Covers widely used instrumental techniques for catalyst characterization, such as x-ray photoelectron spectroscopy, scanning electron microscopy, and more - Includes characterization methods and lists all catalytic behavior of the solid state catalysts - Discusses new developments in nanocatalysts and their advantages over conventional catalysts