Download Free Catalysis In Petroleum Refining Processes Book in PDF and EPUB Free Download. You can read online Catalysis In Petroleum Refining Processes and write the review.

This text examines the thermal and catalytic processes involved in the refining of petroleum including visbreaking, coking, pyrolysis, catalytic cracking, oligomerization, alkylation, hydrofining, hydroisomerization, hydrocracking, and catalytic reforming. It analyzes the thermodynamics, reaction mechanisms, and kinetics of each process, as well as
Petroleum refining and the petrochemical industry play an important role in the current world economy. They provide the platform to convert basic raw materials into many essential products, ranging from transportation fuels (such as gasoline, jet fuel, diesel, and gas oil) to basic and intermediate materials for petrochemical industries and many other valuable chemical products. Advanced Catalysis Processes in Petrochemicals and Petroleum Refining: Emerging Research and Opportunities is an essential comprehensive research publication that provides knowledge on refining processes that could be integrated by the petrochemical industry and discusses how to integrate refining products with petrochemical industries through the use of new technologies. Featuring a range of topics such as biofuel production, environmental sustainability, and biorefineries, this book is ideal for engineers, chemists, industry professionals, policymakers, researchers, academicians, and petrochemical companies.
This work highlights contemporary approaches to resource utilization and provides comprehensive coverage of technological advances in residuum conversion. It illustrates state-of-the-art engineering methods for the refinement of heavy oils, bitumen, and other high-sulphur feedstocks.
Modeling and Simulation of Catalytic Reactors for Petroleum Refining deals with fundamental descriptions of the main conversion processes employed in the petroleum refining industry: catalytic hydrotreating, catalytic reforming, and fluid catalytic cracking. Common approaches for modeling of catalytic reactors for steady-state and dynamic simulations are also described and analyzed. Aspects such as thermodynamics, reaction kinetics, process variables, process scheme, and reactor design are discussed in detail from both research and commercial points of view. Results of simulation with the developed models are compared with those determined at pilot plant scale as well as commercial practice. Kinetics data used in the reactor model are either taken from the literature or obtained under controlled experiments at the laboratory.
These proceedings reflect the important role of catalysis in petroleum refining and the effects of factors such as environmental legislation on the industry. They also show the emergence of significant scientific expertise in the Middle East - the cradle of the oil industry. Participants from all over the world took part in the meeting and the book contains a well-balanced selection of articles from both academia and industry. Current trends in the oil industry focused attention mainly on heavy end hydrotreating, but other processes also gained their share of attention. An invaluable feature of the meeting was the two panel discussions where participants took the opportunity to obtain advance on many real and immediate problems.
Fundamentals of Petroleum Refining presents the fundamentals of thermodynamics and kinetics, and it explains the scientific background essential for understanding refinery operations. The text also provides a detailed introduction to refinery engineering topics, ranging from the basic principles and unit operations to overall refinery economics. The book covers important topics, such as clean fuels, gasification, biofuels, and environmental impact of refining, which are not commonly discussed in most refinery textbooks. Throughout the source, problem sets and examples are given to help the reader practice and apply the fundamental principles of refining. Chapters 1-10 can be used as core materials for teaching undergraduate courses. The first two chapters present an introduction to the petroleum refining industry and then focus on feedstocks and products. Thermophysical properties of crude oils and petroleum fractions, including processes of atmospheric and vacuum distillations, are discussed in Chapters 3 and 4. Conversion processes, product blending, and alkylation are covered in chapters 5-10. The remaining chapters discuss hydrogen production, clean fuel production, refining economics and safety, acid gas treatment and removal, and methods for environmental and effluent treatments. This source can serve both professionals and students (on undergraduate and graduate levels) of Chemical and Petroleum Engineering, Chemistry, and Chemical Technology. Beginners in the engineering field, specifically in the oil and gas industry, may also find this book invaluable. - Provides balanced coverage of fundamental and operational topics - Includes spreadsheets and process simulators for showing trends and simulation case studies - Relates processing to planning and management to give an integrated picture of refining
Petroleum refining involves refining crude petroleum as well as producing raw materials for the petrochemical industry. This book covers current refinery processes and process-types that are likely to come on-stream during the next three to five decades. The book includes (1) comparisons of conventional feedstocks with heavy oil, tar sand bitumen, and bio-feedstocks; (2) properties and refinability of the various feedstocks; (3) thermal processes versus hydroprocesses; and (4) the influence of refining on the environment.
The field of petrochemicals started some years ago with the simple addition reaction of water to propylene for the production of isopropyl alcohol. Currently, the petrochemical industry has become a multi-billion dollar enterprise which encompasses a wide field of chemical products. Almost all the basic organic reactions such as hydrogenation, alkylation, substitution, polymerization, etc. are utilized for the production of these chemicals. It may not, however, have been possible to establish this huge industry without the use of different catalysts. In other words, the great advancements in the catalytic area have supported the vast developments in the petrochemical field. In this book, we have adopted the idea of discussing the petrochemical industry from the point of view of reactants' activities and susceptibilities toward different catalysts. The book is thus classified according to the reaction type. This will eriable students and other users of the book to base their understanding of the petrochemical field on the fundamental principles learned in chemistry. How ever, the first chapter is aimed at establishing some basic facts on the petro chemical industry and its major uses. It discusses, without going into details, the raw materials used, the intermediates and the downstream products. The next eight chapters discuss in some detail the main reactions and the catalysts used for the production of chemicals and polymers from petroleum. The last chapter is devoted to a discussion of some of the practical techniques used in the catalytic field.
Includes topics not found together in books on petroleum processing: economics, automation, process modeling, online optimization, safety, environmental protection Combines overviews of petroleum composition, refinery processes, process automation, and environmental protection with comprehensive chapters on recent advances in hydroprocessing, FCC, lubricants, hydrogen management Gives diverse perspectives, both geographic and topical, because contributors include experts from eight different countries in North America, Europe and Asia, representing oil companies, universities, catalyst vendors, process licensors, consultants and engineering contractors